(08年赤峰二中模擬理) 已知F1(- 2, 0), F2 (2, 0), 點(diǎn)P滿足| PF1| - | PF2| = 2, 記點(diǎn)P的軌跡為E.
(Ⅰ) 求軌跡E的方程;
(Ⅱ) 若直線l過點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),
①無論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng), 在x軸上總存在定點(diǎn)M(m, 0), 使MP ^ MQ恒成立, 求實(shí)數(shù)m的值;
②過P、Q作直線x =的垂線PA、QB, 垂足分別為A、B, 記l =, 求l的取值范圍.
解析:(Ⅰ)由| PF1| - | PF2| = 2 < | F1F2| , 知點(diǎn)P的軌跡E是以F1, F2為焦點(diǎn)的雙曲線右支,
由c = 2, 2a = 2, 得b2 = 3,
故軌跡E的方程為x2 -= 1(x ³ 1).
(Ⅱ)當(dāng)直線l的斜率存在時(shí), 設(shè)直線方程為y = k(x - 2), P(x1, y1), Q(x2, y2),
由, 得: (k2 - 3)x2 - 4k2x + 4k2 + 3 = 0,
∴, 解得k2 > 3,
①
= (x1 - m)(x2 - m) +y1y2
= (k2 +1)x1x2 - (2k2 + m)(x1 + x2) + m2 + 4k2
=+ m2,
∵ MP ^ MQ,
∴= 0,
故3(1 - m2) + k2(m2 - 4m -5) = 0對(duì)任意的k2 > 3恒成立,
∴ , 解得m = - 1,
∴ 當(dāng)m = - 1時(shí), MP ^ MQ,
當(dāng)直線l的斜率不存在時(shí), 由P(2, 3), Q(2, - 3)及M(- 1, 0), 知結(jié)論也成立,
綜上, 當(dāng)m = - 1時(shí), MP ^ MQ.
② ∵ a = 1, c = 2,
∴ 直線x =是雙曲線右準(zhǔn)線,
由雙曲線定義得 | PA | =| PF2 | =| PF2 | , | QB | =| QF2 |,
∴
∵ k2 > 3,
∴ , 故,
注意到直線l的斜率不存在時(shí), |PQ| = |AB|, 此時(shí)l =.
綜上, l Î .年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年赤峰二中模擬理) 2008年北京奧運(yùn)會(huì)乒乓球比賽將產(chǎn)生男子單打、女子單打、男子團(tuán)體、女子團(tuán)體共四枚金牌, 保守估計(jì)中國乒乓球男隊(duì)獲得每枚金牌的概率均為, 中國乒乓球女隊(duì)獲得每枚金牌的概率均為.
(Ⅰ) 求按此估計(jì)中國乒乓球女隊(duì)比中國乒乓球男隊(duì)多獲得一枚金牌的概率;
(Ⅱ) 記中國乒乓球隊(duì)獲得金牌的總數(shù)為x, 按此估計(jì)求x的分布列和數(shù)學(xué)期望Ex. (結(jié)果均用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年赤峰二中模擬理)設(shè)函數(shù)f(x) = lnx - ax + 1.
(Ⅰ) 若函數(shù)f(x)為單調(diào)函數(shù), 求實(shí)數(shù)a 的取值范圍;
(Ⅱ) 當(dāng)a > 0時(shí), 恒有f(x) £ 0, 求a的取值范圍;
(Ⅲ) 證明: ( n Î N, n ³ 2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年赤峰二中模擬文) 已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)當(dāng)時(shí),討論曲線軸的公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年赤峰二中模擬文) 已知如圖橢圓為其右焦點(diǎn),A為左頂點(diǎn),橢圓的右準(zhǔn)線方程為,長軸長為4.過F的直線與橢圓交于異于A的P、Q兩點(diǎn).
(1)求橢圓方程;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com