【題目】市場(chǎng)上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放(且)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.
(1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?
(2)若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來(lái)的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
【答案】(1);(2).
【解析】試題分析:(1)當(dāng)時(shí),代入,依題意有效去污滿足,即或,解得,故有效去污時(shí)間可能達(dá)分鐘;(2)由于某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,故設(shè)項(xiàng)對(duì)應(yīng)的濃度為,此時(shí), , , ,令,將濃度相加,得,分離參數(shù)得,利用換元法和基本不等式求得,故的最小值為.
試題解析:
(1)由題意知有效去污滿足,則或
得,所以有效去污時(shí)間可能達(dá)8分鐘.
(2), , ,
令, ,
∴,若令, ,
又,
所以的最小值為1.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大湖名城,創(chuàng)新高地”的合肥,歷史文化積淀深厚,民俗和人文景觀豐富,科教資源眾多,自然風(fēng)光秀美,成為中小學(xué)生“研學(xué)游”的理想之地.為了將來(lái)更好地推進(jìn)“研學(xué)游”項(xiàng)目,某旅游學(xué)校一位實(shí)習(xí)生,在某旅行社實(shí)習(xí)期間,把“研學(xué)游”項(xiàng)目分為科技體驗(yàn)游、民俗人文游、自然風(fēng)光游三種類型,并在前幾年該旅行社接待的全省高一學(xué)生“研學(xué)游”學(xué)校中,隨機(jī)抽取了100所學(xué)校,統(tǒng)計(jì)如下:
研學(xué)游類型 | 科技體驗(yàn)游 | 民俗人文游 | 自然風(fēng)光游 |
學(xué)校數(shù) | 40 | 40 | 20 |
該實(shí)習(xí)生在明年省內(nèi)有意向組織高一“研學(xué)游”學(xué)校中,隨機(jī)抽取了3所學(xué)校,并以統(tǒng)計(jì)的頻率代替學(xué)校選擇研學(xué)游類型的概率(假設(shè)每所學(xué)校在選擇研學(xué)游類型時(shí)僅選擇其中一類,且不受其他學(xué)校選擇結(jié)果的影響):
(1)若這3所學(xué)校選擇的研學(xué)游類型是“科技體驗(yàn)游”和“自然風(fēng)光游”,求這兩種類型都有學(xué)校選擇的概率;
(2)設(shè)這3所學(xué)校中選擇“科技體驗(yàn)游”學(xué)校數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若、兩點(diǎn)分別在函數(shù)與的圖像上,且關(guān)于直線對(duì)稱,則稱、是與的一對(duì)“伴點(diǎn)”(、與、視為相同的一對(duì)).已知,,若與存在兩對(duì)“伴點(diǎn)”,則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為、,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為、,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)對(duì)任意都有,則稱為在區(qū)間上的可控函數(shù),區(qū)間稱為函數(shù)的“可控”區(qū)間,寫(xiě)出函數(shù)的一個(gè)“可控”區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號(hào)是___________.
①若,則的最大值為;
②若,,是等差數(shù)列的前項(xiàng),則;
③“”的一個(gè)必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com