【題目】設(shè)函數(shù)f(x)=a﹣ (a∈R).
(1)請你確定a的值,使f(x)為奇函數(shù);
(2)用單調(diào)性定義證明,無論a為何值,f(x)為增函數(shù).
【答案】
(1)解:∵函數(shù)f(x)是R上的奇函數(shù),
∴f(0)=a﹣ =0,
∴a=1;
(2)解:證明:任。簒1<x2∈R,
∴f(x1)﹣f(x2)=a﹣ ﹣a+ =2
∵x1<x2,
∴ ,
又 >0, ,
∴f(x1)﹣f(x2)<0,
即f(x1)<f(x2),
∴f(x)在R上的單調(diào)遞增
【解析】(1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.(2)根函數(shù)單調(diào)性的定義進(jìn)行證明即可.
【考點精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且.
(1)若函數(shù)區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(2)設(shè)函數(shù), 為自然對數(shù)的底數(shù).若存在,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若在上至少含有10個零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= x3﹣x2+ax+m,其中a>0,如果存在實數(shù)t,使f′(t)<0,則f′(t+2)f′( )的值( )
A.必為正數(shù)
B.必為負(fù)數(shù)
C.必為非負(fù)
D.必為非正
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時,求曲線上的點到直線的距離的最大值;
(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點,AC與BD的交點為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com