分析 根據(jù)對(duì)數(shù)函數(shù)的圖象和性質(zhì),可判斷①;根據(jù)二次函數(shù)的圖象和性質(zhì),可判斷②;根據(jù)函數(shù)零點(diǎn)的定義,可判斷③;分析函數(shù)的奇偶性和單調(diào)性,可判斷④.
解答 解:若loga3>logb3>0,則a<b,故①錯(cuò)誤;
函數(shù)f(x)=x2-2x+3的圖象開口朝上,且以直線x=1為對(duì)稱軸,
當(dāng)x=1時(shí),函數(shù)取最小值2,無最大值,故函數(shù)f(x)=x2-2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);
故②正確;
g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,
則函數(shù)g(x)可能存在零點(diǎn);
故③錯(cuò)誤;
數(shù)$h(x)=\frac{{1-{e^{2x}}}}{e^x}$滿足h(-x)=-h(x),故h(x)為奇函數(shù),
又由$h′(x)=\frac{-{e}^{2x}}{{e}^{x}}$=-ex<0恒成立,故h(x)為減函數(shù)
故④正確;
故答案為:②④.
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了對(duì)數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的值域,函數(shù)的零點(diǎn),函數(shù)的奇偶性和函數(shù)的單調(diào)性等知識(shí)點(diǎn),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$>$\frac{1}$ | B. | 2a-b<1 | C. | $\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$ | D. | lg(a-b)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{9}{4}$ | B. | $\frac{9}{4}$ | C. | $-\frac{4}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com