20.如圖,已知PA⊥矩形ABCD所在的平面,M、N分別是AB、PC的中點,若AD=PA=a,AB=$\sqrt{2}$a.
(1)在PC上是否存在一點Q,使得AQ∥平面MND?若存在,求出該點的位置,若不存在,請說明理由;
(2)求二面角N-MD-C大小.

分析 (1)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,求出平面DMN的法向量,設(shè)在PC上存在一點Q(x1,y1,z1),且$\overrightarrow{PQ}=t\overrightarrow{PC}$,使得AQ∥平面MND,求出$\overrightarrow{AQ}$,由$\overrightarrow{n}•\overrightarrow{AQ}$,能求出Q點的位置.
(2)求出平面DMN的法向量和平面MDC的法向量,由此利用向量法能求出二面角N-MD-C大。

解答 解:(1)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
由已知得D(a,0,0),P(0,0,a),M(0,$\frac{\sqrt{2}}{2}$a,0),C(a,$\sqrt{2}a$,0),N($\frac{a}{2}$,$\frac{\sqrt{2}}{2}a$,$\frac{a}{2}$),
∴$\overrightarrow{DM}$=(-a,$\frac{\sqrt{2}}{2}a$,0),$\overrightarrow{DN}$=(-$\frac{a}{2}$,$\frac{\sqrt{2}}{2}a$,$\frac{a}{2}$),
設(shè)平面DMN的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DM}=-ax+\frac{\sqrt{2}}{2}ay=0}\\{\overrightarrow{n}•\overrightarrow{DN}=-\frac{a}{2}x+\frac{\sqrt{2}}{2}ay+\frac{a}{2}z=0}\end{array}\right.$,
取y=$\sqrt{2}$,得$\overrightarrow{n}$=(1,$\sqrt{2}$,-1),
設(shè)在PC上存在一點Q(x1,y1,z1),且$\overrightarrow{PQ}=t\overrightarrow{PC}$,使得AQ∥平面MND,
則(x1,y1,z1-a)=(ta,$\sqrt{2}ta$,-ta),0≤t≤1,∴Q(ta,$\sqrt{2}ta$,a-ta),
$\overrightarrow{AQ}$=(ta,$\sqrt{2}ta$,a-ta),
∴$\overrightarrow{n}•\overrightarrow{AQ}$=ta+2ta-a+ta=0,解得t=$\frac{1}{4}$,
∴在PC上存在一點Q,使得AQ∥平面MND,且$\overrightarrow{PQ}=\frac{1}{4}\overrightarrow{PC}$,點Q($\frac{1}{4}a$,$\frac{\sqrt{2}}{4}a$,$\frac{3}{4}$a).
(2)平面DMN的法向量$\overrightarrow{n}$=(1,$\sqrt{2}$,-1),平面MDC的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角N-MD-C的平面角的大小為θ,
則cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=|$\frac{-1}{\sqrt{4}}$|=$\frac{1}{2}$,
∴θ=60°,即二面角N-MD-C大小為60°.

點評 本題考查滿足條件的點是否存在的判斷與求法,考查二面角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,\;x>0\\{2^x},\;\;\;x<0\end{array}$,則$f({f(\frac{1}{4})})$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=log2x+1的定義域是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)滿足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]時,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則f(2014),f(2015),f(2016)大小關(guān)系為(  )
A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2014)>f(2015)
C.f(2016)=f(2014)>f(2015)D.f(2014)>f(2015)=f(2016)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的離心率為$\frac{1}{2}$,則雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的漸近線方程為( 。
A.$y=±\frac{{\sqrt{3}}}{2}x$B.$y=±\frac{{2\sqrt{3}}}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=$\sqrt{2}$,b=1,f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線的漸近線方程為y=±$\frac{1}{2}$x,且經(jīng)過點(4,1),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1B.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的右頂點、右焦點的一個圓的圓心(4,y0)在該橢圓上,則y0=$±\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x+1)的定義域為(-2,-1),則函數(shù)f(2x+1)的定義域為(  )
A.(-5,-3)B.(-2,-$\frac{3}{2}$ )C.(-$\frac{3}{2}$,-1)?D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊答案