10.某車間為了規(guī)定工時(shí)定額,需要確定加工某零件所花費(fèi)的時(shí)間,為此作了四次實(shí)驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$)

分析 (1)由題意描點(diǎn)作出散點(diǎn)圖,
(2)由表中數(shù)據(jù)求得$\widehat$=$\frac{52.5-4×3.{5}^{2}}{54-4×3.{5}^{2}}$=$\frac{3.5}{5}$=0.7,$\widehat{a}$=3.5-0.7×3.5=1.05,從而解得;
(3)將x=10代入回歸直線方程得$\widehat{y}$=0.7×10+1.05=8.05小時(shí).

解答 解:(1)散點(diǎn)圖如右圖所示,
(2)由表中數(shù)據(jù)得:
$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=52.5,$\overline{x}$=3.5,$\overline{y}$=3.5,$\sum_{i=1}^{4}{{x}_{i}}^{2}$=54.
∴$\widehat$=$\frac{52.5-4×3.{5}^{2}}{54-4×3.{5}^{2}}$=$\frac{3.5}{5}$=0.7,
∴$\widehat{a}$=3.5-0.7×3.5=1.05,
∴$\widehat{y}$=0.7x+1.05.
(3)將x=10代入回歸直線方程,
$\widehat{y}$=0.7×10+1.05=8.05(小時(shí)).
∴預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí).

點(diǎn)評(píng) 本題考查了線性回歸方程的應(yīng)用及描點(diǎn)作圖的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知:一個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)為(-1,0),(3,0),與y軸的交點(diǎn)為(0,3).求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),左、右焦點(diǎn)分別為F1、F2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2+1的取值范圍為( 。
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l:y=x+m與橢圓$C:\frac{x^2}{8}+\frac{y^2}{4}=1$有公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A 為橢圓上一點(diǎn),E,F(xiàn) 分別為橢圓的左右焦點(diǎn),∠EAF=90°,設(shè)AE 的延長(zhǎng)線交橢圓于B,又|AB|=|AF|,則橢圓的離心率e為(  )
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且|A1A2|=4$\sqrt{3}$,該橢圓的離心率為$\frac{{\sqrt{6}}}{3}$,以M(-3,2)為圓心,r為半徑的圓與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)若A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求圓M的方程;
(3)若點(diǎn)A的坐標(biāo)為(0,2),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)y=x2與y=$(\frac{1}{2})^{x-2}$的圖象交點(diǎn)為(x0,y0),則x0所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)g(x)=Asin(ωx+φ)+B(A>0,ω>0),滿足:當(dāng)x1,x2∈R時(shí),有|g(x1)-g(x2)|≤$\frac{1}{4}$,當(dāng)相位為$\frac{π}{6}$時(shí),g(x)的值為$\frac{7}{16}$.
(1)當(dāng)g(x)的周期為π,初相為$\frac{π}{3}$,且g(x)≥$\frac{1}{2}$時(shí),求x的范圍;
(2)若f(x)=ax-$\frac{3}{2}$x2的最大值不大于$\frac{1}{6}$,且f(g(x))≥$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案