(本題滿分13分)設(shè)函數(shù),已知,且,曲線在x=1處取極值.
|
(Ⅱ)如果當(dāng)是與無(wú)關(guān)的常數(shù)時(shí),恒有,求實(shí)數(shù)的最小值
(Ⅰ)(Ⅱ)
【解析】解:(Ⅰ)∵,∴又,可得,即,故,.則判別式知方程(*)有兩個(gè)不等實(shí)根,
設(shè)為,又由知,為方程(*)的一個(gè)實(shí)根,
又由根與系數(shù)的關(guān)系得,.………………………3分
當(dāng)或時(shí),,當(dāng)時(shí),,
故函數(shù)的遞增函數(shù)區(qū)間為,由題設(shè)知,
因此, …………………………………………………6分
由(1)知,得的取值范圍為. …………………………………8分
(Ⅱ)由,即,即.
因,得,整理得. ………………………9分
設(shè),它可以看作是關(guān)于的一次函數(shù).
由題意,函數(shù)對(duì)于恒成立.
故即得或.…………………………11分
由題意,故.
因此的最小值為. …………………………………………………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三上學(xué)期期末模塊考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
設(shè)函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
設(shè),其中,如果,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分13分)設(shè)命題:函數(shù)=-2-1在區(qū)間(-∞,3]上單調(diào)遞減;命題:函數(shù)的定義域是.如果命題為真命題,為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分13分) 設(shè)銳角△ABC的三內(nèi)角A,B,C的對(duì)邊分別為 a,b,c,向量
, ,已知與共線 。 (Ⅰ)求角A的大小;
(Ⅱ)若,,且△ABC的面積小于,求角B的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市朝陽(yáng)區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿分13分)
設(shè)函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值及取得最大值時(shí)的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com