13.已知集合M={x|1+x≥0},N={x|$\frac{4}{1-x}$>0},則M∩N=( 。
A.{x|-1≤x<1}B.{x|x>1}C.{x|-1<x<1}D.{x|x≥-1}

分析 分別求出集合M和N,由此能求出M∩N的值.

解答 解:∵集合M={x|1+x≥0}={x|x≥-1},
N={x|$\frac{4}{1-x}$>0}={x|x<1},
∴M∩N={x|-1≤x<1}.
故選:A.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調性,再根據(jù)結論確定f(m2-m+1)+f(-$\frac{3}{4}$)與0的大小關系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea,keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)當x∈R時,求f(x)的單調增區(qū)間;
(Ⅱ)當$x∈[0,\frac{π}{2}]$時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖所示的偽代碼,如果輸入x的值為5,則輸出的結果y為23.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設a>0,函數(shù)f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若對任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,則實數(shù)a的取值范圍是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=1-$\frac{2}{{2}^{x}+a}$為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調性,并用定義加以證明;
(2)若關于x的方程f(x)=m在[-1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.經(jīng)測算,某型號汽車在勻速行駛過程中每小時耗油量y(升)與速度x(千米/每小時) (50≤x≤120)的關系可近似表示為:$y=\left\{\begin{array}{l}\frac{1}{75}({{x^2}-130x+4900}),x∈[{50,80})\\ 12-\frac{x}{60},x∈[{80,120}]\end{array}\right.$
(Ⅰ)該型號汽車速度為多少時,可使得每小時耗油量最低?
(Ⅱ)已知A,B兩地相距120公里,假定該型號汽車勻速從A地駛向B地,則汽車速度為多少時總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點P(-2,$\frac{\sqrt{14}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,過點P作圓O:x2+y2=2的切線,切點為A,B,若直線AB恰好過橢圓C的左焦點F,則a2+b2的值是( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在直角坐標系xOy中,終邊在坐標軸上的角α的集合是{α|α=$\frac{nπ}{2}$,n∈Z}.

查看答案和解析>>

同步練習冊答案