已知f(x)=
x+ax2+bx+1
(-1≤x≤1)為奇函數(shù).
(1)求a、b值;
(2)判斷f(x)的單調(diào)性并用定義證明.
分析:(1)由函數(shù)f(x)=
x+a
x2+bx+1
(-1≤x≤1)為奇函數(shù),可知f(0)=0,求得a,再由f(-1)=-f(1)求得b,從而有關(guān)f(x)=
x
x2+1

 (2)用定義證明其單調(diào)性,先在給定的區(qū)間上任取兩個變量且界定大小,再作差變形與零比較,要注意變形到位.
解答:解:(1)∵知f(x)=
x+a
x2+bx+1
(-1≤x≤1)為奇函數(shù)
∴f(0)=0
∴a=0,
又f(-1)=-f(1)
∴b=0
則a=0,b=0;
(2)分析可得f(x)=
x
x2+1
是增函數(shù).
證明,任取x1,x2∈[-1,1]且x1<x2
f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1
=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
<0
∴是增函數(shù).
點(diǎn)評:本題主要考查利用奇偶性求函數(shù)解析式,利用單調(diào)性定義證明函數(shù)的單調(diào)性,是常規(guī)題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域?yàn)?span id="bjr1fzx" class="MathJye">[
1
a
,1],若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},按照下列對應(yīng)法則能構(gòu)成集合A到集合B的映射的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù):當(dāng)x>0時,f(x)=x(1-x);則當(dāng)x<0時,f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.1010pic.com/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案