【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線過原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線和直線的極坐標(biāo)方程;

2)若相交于不同的兩點(diǎn),求的取值范圍.

【答案】1 ,;(2

【解析】

1)利用同角的三角函數(shù)關(guān)系式中的平方和關(guān)系,把曲線的參數(shù)方程化成普通方程,再利用直角坐標(biāo)方程和極坐標(biāo)方程互化公式,把曲線的直角坐標(biāo)方程化成極坐標(biāo)方程.根據(jù)已知直接寫出直線的極坐標(biāo)方程;

2)將直線與曲線的極坐標(biāo)方程聯(lián)立,根據(jù)一元二次方程根的判別式,結(jié)合一元二次方程根與系數(shù)關(guān)系、極徑的定義、正弦函數(shù)的最值進(jìn)行求解即可.

解:(1)由為參數(shù))有:,

所以:的極坐標(biāo)方程為:

直線的極坐標(biāo)方程為:.

2)聯(lián)立:有:

根據(jù)題有:,所以:.

在極坐標(biāo)系下設(shè),所以:.

所以:.

因為:,所以:

所以:取值范圍為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有(

1)方程),表示的曲線在第二和第四象限;

2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過2

3)曲線構(gòu)成的四葉玫瑰線面積大于;

4)曲線上有5個整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

A.1)(2B.1)(2)(3

C.1)(2)(4D.1)(3)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個負(fù)數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線交橢圓于兩點(diǎn),.

1)若,且點(diǎn)滿足,證明:點(diǎn)不在橢圓上;

2)若橢圓的左,右焦點(diǎn)分別為,直線與線段和橢圓的短軸分別交于兩個不同點(diǎn),,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國農(nóng)業(yè)銀行廣元分行發(fā)行金穗廣元·劍門關(guān)旅游卡是以游廣元、知廣元、愛廣元、共享和諧廣元為主題活動的一項經(jīng)濟(jì)性和公益性相結(jié)合的重大舉措,以最優(yōu)惠的價格惠及廣元戶籍市民、浙江及黑龍江援建省群眾、省內(nèi)援建市市民,凡上述對象均可辦理此卡,本人憑此卡及本人身份證一年內(nèi)(期滿后可重新充值辦理)在廣元市范圍內(nèi)可無限次游覽所有售門票景區(qū)景點(diǎn),如:劍門關(guān)、朝天明月峽、旺蒼鼓城山七里峽、青川唐家河、廣元皇澤寺、蒼溪梨博園、昭化古城等,現(xiàn)有浙江及黑龍江援建省群眾甲乙兩人準(zhǔn)備到廣元旅游(同游),他們決定游覽上面個景點(diǎn),首先游覽劍門關(guān)但不能最后游覽朝天明月峽的游覽順序有( )種.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.對于nN*n2),定義一個如下數(shù)陣:,其中對任意的1in,1jn,當(dāng)i能整除j時,aij1;當(dāng)i不能整除j時,aij0.設(shè)

(Ⅰ)當(dāng)n6時,試寫出數(shù)陣A66并計算

(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:;

(Ⅲ)若,,求證:gn)﹣1fn)<gn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在抗擊新冠肺炎的疫情中,某醫(yī)院從3位女醫(yī)生,5位男醫(yī)生中選出4人參加援鄂醫(yī)療隊,至少有一位女醫(yī)生入選,其中女醫(yī)生甲和男醫(yī)生乙不能同時參加,則不同的選法共有種______(用數(shù)字填寫答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知SAB是邊長為2的等邊三角形,∠ACB45°,當(dāng)三棱錐SABC體積最大時,其外接球的表面積為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某區(qū)有一塊空地,其中,.當(dāng)?shù)貐^(qū)政府規(guī)劃將這塊空地改造成一個旅游景點(diǎn),擬在中間挖一個人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護(hù)網(wǎng).

1)當(dāng)時,求防護(hù)網(wǎng)的總長度;

2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定的大小;

3)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設(shè)計施工方案,可使的面積最。孔钚∶娣e是多少?

查看答案和解析>>

同步練習(xí)冊答案