15.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求實(shí)數(shù)k的值.
(2)若f(1)<0,試判斷并證明函數(shù)f(x)的單調(diào)性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在區(qū)間[1,∞)上的最小值為-2,求實(shí)數(shù)m的值.

分析 (1)根據(jù)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù),直接由f(0)=0求得k的值;
(2)把(1)求得的k的值代入函數(shù)解析式,判斷其單調(diào)性,運(yùn)用單調(diào)性的定義證明,注意作差、變形和定符號(hào)、下結(jié)論幾個(gè)步驟;
(3)由f(1)=$\frac{3}{2}$,求得a的值,化簡(jiǎn)函數(shù)g(x),令t=f(x)=2x-2-x換元,利用函數(shù)的單調(diào)性求得t的范圍,然后對(duì)m分類求得答案.

解答 解:(1)∵函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,
∴1-(k-1)=0,∴k=2,
經(jīng)檢驗(yàn)知:k=2滿足題意;
(2)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a-a-1<0,
又a>0,且a≠1,∴0<a<1,
設(shè)m<n,則f(m)-f(n)=am-a-m-(an-a-n
=(am-an)+(a-n-a-m)=(am-an)(1+$\frac{1}{{a}^{m}{a}^{n}}$),
由于m<n,則am>an>0,即am-an>0,
f(m)-f(n)>0,即f(m)>f(n),
則當(dāng)0<a<1時(shí),f(x)在R上單調(diào)遞減.
(3)∵f(1)=$\frac{3}{2}$,
∴a-a-1=$\frac{3}{2}$,即2a2-3a-2=0,
∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,f(x)=2x-2-x為增函數(shù),
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-2mt+2=(t-m)2+2-m2(t≥$\frac{3}{2}$),
若m≥$\frac{3}{2}$,當(dāng)t=m時(shí),h(t)min=2-m2=-2,∴m=2;
若m<$\frac{3}{2}$,當(dāng)t=$\frac{3}{2}$時(shí),h(t)min=$\frac{17}{4}$-3m=-2,解得m=$\frac{25}{12}$>$\frac{3}{2}$,故舍去.
綜上可知m=2.

點(diǎn)評(píng) 本題考查了函數(shù)恒成立問題,考查了函數(shù)的性質(zhì)及其應(yīng)用,考查了數(shù)學(xué)轉(zhuǎn)化思想方法及分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|y=lgx},B={y|y=2x},則(  )
A.A⊆BB.A∩B=∅C.A=BD.A∪B=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex-ax(e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)α∈N,且e-2<${∫}_{0}^{1}$f(x)dx<e-1時(shí),求f(x)的最小值;
(2)設(shè)不等式f(x)>x的解集為P,且{x|0≤x≤2}⊆P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線nx-y-n+1=0與直線x-ny=2n的交點(diǎn)在第二象限,則n的取值范圍是( 。
A.(0,1)B.(-1,1)C.(1,3)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=lg(1-x)+lg(3x+1)的定義域是(  )
A.[-$\frac{1}{3}$,1]B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.(-$\frac{1}{3}$,1)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{2n•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的反函數(shù).
(1)y=log6x;
(2)y=2-x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(m2-m-1)xm-3,m為何值時(shí);
(1)f(x)是正比例函數(shù),并求此時(shí)f(3)的值;
(2)f(x)是二次函數(shù),并求此時(shí)f(2)的值;
(3)f(x)是冪函數(shù),并求此時(shí)f(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有一種圓柱體形狀的筆筒,底面半徑為4cm,高為12cm.現(xiàn)要為100個(gè)這種相同規(guī)格的筆筒涂色(筆筒內(nèi)外均要涂色,筆筒厚度忽略不計(jì)).如果每0.5kg涂料可以涂1m2,那么為這批筆筒涂色約需涂料3.52kg.(保留兩位小數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案