【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.
【答案】(1)函數(shù)在區(qū)間,上單調(diào)遞增;函數(shù)在區(qū)間上單調(diào)遞減. (2)一個(gè),理由見解析
【解析】
(1),列表得到在區(qū)間上的正負(fù)符號(hào)即可得到的單調(diào)性;
(2)計(jì)算,,,由(1)的結(jié)論及零點(diǎn)存在定理即可得到答案.
(1)解:由題意得,
令,得,.
與在區(qū)間上的情況如下:
+ | 0 | _ | 0 | + | |
增 | 減 | 增 |
函數(shù)在區(qū)間,上單調(diào)遞增;
函數(shù)在區(qū)間上單調(diào)遞減.
(2)根據(jù)第一問,由函數(shù)單調(diào)性可知
當(dāng)時(shí),有極大值;
當(dāng)時(shí),有極小值;
在區(qū)間單調(diào)遞增,在區(qū)間上單調(diào)遞減,
可知在上,恒有;
當(dāng)時(shí), ,(舉例不唯一)
上單調(diào)遞增,由零點(diǎn)存在定理可知,
有且只有一個(gè)實(shí)數(shù),使得.
所以函數(shù)有且只有一個(gè)零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)在處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)個(gè) | 5 | 20 | 100 | 325 |
參考數(shù)據(jù):,,,
,,
,,
,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:對(duì)任意成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)f(x)=x3-x滿足:對(duì)于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是( )
A. [-, ]
B. [-, ]
C. (-∞,- ]∪[,+∞)
D. (-∞,- ]∪[,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系中的一點(diǎn),有下列說法:
①點(diǎn)到坐標(biāo)原點(diǎn)的距離為;
②的中點(diǎn)坐標(biāo)為;
③點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為;
④點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為;
⑤點(diǎn)關(guān)于坐標(biāo)平面對(duì)稱的點(diǎn)的坐標(biāo)為.
其中正確的個(gè)數(shù)是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,底面,,為中點(diǎn).
(1)試在上確定一點(diǎn),使得平面;
(2)點(diǎn)在滿足(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同.每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個(gè)白球的概率;
②獲獎(jiǎng)的概率;
(2)求在2次游戲中獲獎(jiǎng)次數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列函數(shù)的單調(diào)區(qū)間,并指出該函數(shù)在其單調(diào)區(qū)間上是增函數(shù)還是減函數(shù).
(1)f(x)=-;
(2)f(x)=
(3)f(x)=-x2+2|x|+3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com