已知不等式組
y≤x
y≥-x
x≤a
表示的平面區(qū)域S的面積為4,則a=
2
2
;若點P(x,y)∈S,則z=2x+y的最大值為
6
6
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABO及其內(nèi)部,根據(jù)三角形面積公式建立關(guān)于a的方程,解之可得a=2.再將目標(biāo)函數(shù)z=2x+y對應(yīng)的直線進行平移,可得當(dāng)x=2,y=2時,z=2x+y取得最大值為6.
解答:解:根據(jù)題意,可得a是一個正數(shù),由此作出不等式組
y≤x
y≥-x
x≤a
表示的平面區(qū)域,
得到如圖的△ABO及其內(nèi)部,其中A(a,a),B(a,-a),O(0,0)
∴平面區(qū)域的面積S=
1
2
×2a×a=4,解之得a=2(舍負).
設(shè)z=F(x,y)=2x+y,將直線l:z=2x+y進行平移,
當(dāng)l經(jīng)過點A時,目標(biāo)函數(shù)z達到最大值
∴z最大值=F(2,2)=6
故答案為:2,6
點評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤x
y≥-x
x≤a
,表示的平面區(qū)域的面積為4,點P(x,y)在所給平面區(qū)域內(nèi),則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤x
y≥-x
x≤a
,表示的平面區(qū)域的面積為4,點P(x,y)在所給平面區(qū)域內(nèi),則z=2x+y的最大值為( 。
A、3B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域為M,直線y=x與曲線y=
1
2
x2
所圍成的平面區(qū)域為N.
(1)區(qū)域N的面積為
2
3
2
3
;
(2)現(xiàn)隨機向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍山縣模擬)已知不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域為M,直線y=x與曲線y=
1
2
x2
所圍成的平面區(qū)域為N,現(xiàn)隨機向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
1
6
1
6

查看答案和解析>>

同步練習(xí)冊答案