精英家教網 > 高中數學 > 題目詳情
若方程x2+ky2=4表示焦點在y軸上的橢圓,則實數k的取值范圍是( 。
A.(0,1)B.(0,2)C.(1,4)D.(0,+∞)
橢圓方程化為
x2
4
+
y2
4
k
=1
,
由于橢圓的焦點在y軸上,則
4
k
>4
,即k<1.
又k>0,
∴0<k<1.
故選:A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

△ABC的頂點A(-5,0)、B(5,0),△ABC的周長為22,則頂點C的軌跡方程是(  )
A.
x2
36
+
y2
11
=1
B.
x2
25
+
y2
11
=1
C.
x2
36
+
y2
11
=1(y≠0)
D.
x2
9
+
y2
16
=1(y≠0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖:已知橢圓A,B,C是長軸長為4的橢圓上三點,點A是長軸的一個端點,BC過橢圓的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求橢圓的標準方程;
(Ⅱ)如果橢圓上兩點P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實數λ使
PQ
AB
?請給出證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若方程
x2
k-2
+
y2
3-k
=1
表示橢圓,則實數k的取值范圍是( 。
A.k<2B.k>3
C.2<k<3且k≠
5
2
D.k<2或k>3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知θ∈(0°,90°],則方程x2+y2sinθ=1表示的平面圖形是( 。
A.圓B.橢圓C.雙曲線D.圓或橢圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知方程ax2+by2=ab和ax+by+c=0,其中,ab≠0,a≠b,c>0,它們所表示的曲線可能是下列圖象中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線的對稱軸為坐標軸,實軸長與虛軸長的和為14,焦距為10,則焦點在x軸上的雙曲線的方程為( 。
A.
x2
9
+
y2
16
=1
B.
x2
25
+
y2
16
=1
C.
x2
9
-
y2
16
=1
x2
16
-
y2
9
=1
D.以上都不對

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1的兩個焦點為F1F2
,點M在橢圓上,
MF1
MF2
等于-2,則△F1MF2的面積等于(  )
A.1B.
2
C.2D.
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,過其右焦點做斜率不為0的直線l與橢圓交于A,B兩點,設在A,B兩點處的切線交于點M(x0,y0),則M點的橫坐標x0的取值范圍是( 。
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

同步練習冊答案