分析 (Ⅰ)用x,y分別表示小陳、小李到班的時間,則x∈[10,30],y∈[10,30],作出正方形區(qū)域得答案;
(Ⅱ)小陳比小李至少晚到5分鐘,即x-y≥5,由線性規(guī)劃知識求出可行域,利用面積比得答案.
解答 解:(Ⅰ)用x,y分別表示小陳、小李到班的時間,
則x∈[10,30],y∈[10,30],
所有可能結(jié)果對應坐標平面內(nèi)一個正方形區(qū)域ABCD,
如圖所示.
(Ⅱ)小陳比小李至少晚到5分鐘,即x-y≥5,
對應區(qū)域為△BEF,
所求概率$P=\frac{{{S_{△BEF}}}}{{{S_{ABCD}}}}=\frac{{\frac{1}{2}×15×15}}{20×20}=\frac{9}{32}$.
點評 本題考查幾何概型,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,關鍵是由題意作出圖形,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 243 | B. | $27\root{5}{27}$ | C. | $\sqrt{3}$ | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{17}{2}$ | B. | $\frac{19}{2}$ | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com