18.若函數(shù)f(x)=log2(x+1)+a的反函數(shù)的圖象經(jīng)過點(diǎn)(4,1),則實(shí)數(shù)a=3.

分析 由題意可得函數(shù)f(x)=log2(x+1)+a過(1,4),代入求得a的值.

解答 解:函數(shù)f(x)=log2(x+1)+a的反函數(shù)的圖象經(jīng)過點(diǎn)(4,1),
即函數(shù)f(x)=log2(x+1)+a的圖象經(jīng)過點(diǎn)(1,4),
∴4=log2(1+1)+a
∴4=1+a,
a=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了互為反函數(shù)的兩個(gè)函數(shù)之間的關(guān)系與應(yīng)用問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,若集合A={y|y=3-2-x},B={x|$\frac{x-2}{x}$≤0},則A∩∁UB=( 。
A.(-∞,0)∪[2,3)B.(-∞,0]∪(2,3)C.[0,2)D.[0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線C:4x2-y2=4及直線l:y=kx-1
(1)求雙曲線C的漸近線方程及離心率;
(2)直線l與雙曲線C左右兩支各有一個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sinα
(2)求$\frac{sin2α+cos2α+1}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)p:x2-x-20=0,q:log2(x-5)<2,則p是q的( 。
A.充分不必要條件B.必要不充分條 件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)閧0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f-1(x),且f-1(x)與f(x)不完全相同,則f(x)與f-1(x)圖象的公共點(diǎn)必在直線y=x上;
其中真命題的序號(hào)是①②.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=9x-2a•3x+3:
(1)若a=1,x∈[0,1]時(shí),求f(x)的值域;
(2)當(dāng)x∈[-1,1]時(shí),求f(x)的最小值h(a);
(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)閇m,n]時(shí),其值域?yàn)閇m2,n2],若存在,求出m、n的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某班早晨7:30開始上早讀課,該班學(xué)生小陳和小李在早上7:10至7:30之間到班,且兩人在此時(shí)間段的任何時(shí)刻到班是等可能的.
(1)在平面直角坐標(biāo)系中畫出兩人到班的所有可能結(jié)果表示的區(qū)域;
(2)求小陳比小李至少晚5分鐘到班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f:A→B為從集合A到集合B的一個(gè)映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),若A中元素(1,a)的象是(b,4),則實(shí)數(shù)a,b的值分別為( 。
A.-2,3B.-2,-3C.-3,-2D.1,4

查看答案和解析>>

同步練習(xí)冊(cè)答案