【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)已知常數(shù)解關(guān)于的不等式;
(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析: (Ⅰ)去掉絕對(duì)值結(jié)合即可求出不等式的解集;(Ⅱ)函數(shù)的圖像恒在函數(shù)圖像的上方,轉(zhuǎn)化為恒成立,分離參變量,利用絕對(duì)值不等式求出函數(shù)的最值,進(jìn)而求得參數(shù)的范圍.
試題解析:(Ⅰ)由得,所以或
所以或,故不等式解集為
(Ⅱ)因?yàn)楹瘮?shù)的圖像恒在函數(shù)圖像的上方,所以恒成立,則恒成立,因?yàn)?/span>,所以的取值范圍是
點(diǎn)睛:本題考查解不等式以及由恒成立問(wèn)題轉(zhuǎn)化的含絕對(duì)值函數(shù)的最值問(wèn)題,屬于基礎(chǔ)題目. 對(duì)絕對(duì)值三角不等式:|a|-|b|≤|a±b|≤|a|+|b|.(1)當(dāng)ab≥0時(shí),|a+b|=|a|+|b|;當(dāng)ab≤0時(shí),|a-b|=|a|+|b|.(2)該定理可以推廣為|a+b+c|≤|a|+|b|+|c|,也可強(qiáng)化為||a|-|b||≤|a±b|≤|a|+|b|,它們經(jīng)常用于含絕對(duì)值的不等式的推證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分) 已知橢圓經(jīng)過(guò)點(diǎn),離心率為,過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 為何值時(shí), .①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R.如果A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(1)若=6,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)工商局、消費(fèi)者協(xié)會(huì)在月號(hào)舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識(shí).組織方從參加活動(dòng)的群眾中隨機(jī)抽取名群眾,按他們的年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺(tái)記者要從抽取的群眾中選人進(jìn)行采訪,求被采訪人恰好在第組或第組的概率;
(Ⅱ)已知第組群眾中男性有人,組織方要從第組中隨機(jī)抽取名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,兩焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)、是直線上的兩點(diǎn),且.求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com