已知函數(shù)>0)
(1)若的一個(gè)極值點(diǎn),求的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對(duì)任意的總存在成立,求實(shí)數(shù)m的取值范圍

(1); (2); (3)

解析試題分析:(1)先求函數(shù)的導(dǎo)函數(shù),然后由的一個(gè)極值點(diǎn),有求得:,(2),從而可知; ,從而解得 ;(3)先由已知條件由化歸與轉(zhuǎn)化思想,對(duì)任意的總存在成立轉(zhuǎn)化為對(duì)任意的,不等式恒成立,設(shè)左邊為,然后對(duì)函數(shù)進(jìn)行討論,從而得出的取值范圍
試題解析:

由已知,得 ,
,,                3分


6分
(3)時(shí),由(2)知,上的最大值為
于是問(wèn)題等價(jià)于:對(duì)任意的,不等式恒成立 ---8分
,(
,
當(dāng)時(shí),2ma—1+2m<0,∴g’(a)<0在區(qū)間上遞減,
此時(shí),,
時(shí)不可能使恒成立,故必有    10分
 
,可知在區(qū)間上遞減,
在此區(qū)間上,有,與恒成立矛盾,
,這時(shí),,上遞增,
恒有,滿(mǎn)足題設(shè)要求,,即,
所以,實(shí)數(shù)的取值范圍為                         14分
考點(diǎn):1 利用函數(shù)的單調(diào)性求函數(shù)的極值;2 化歸轉(zhuǎn)化和分類(lèi)討論的數(shù)學(xué)思想方法的運(yùn)用;3 恒成立問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線(xiàn)的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對(duì)任意,均有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)若函數(shù)在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)任意的正整數(shù)n,不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在使得對(duì)任意的恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的值;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,其中為常數(shù),,函數(shù)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線(xiàn)分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),有;
(3)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若時(shí),求處的切線(xiàn)方程;
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(是常數(shù))在處的切線(xiàn)方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案