如圖是函數(shù)y=xα的圖象,則α的取值可以是(  )
分析:由函數(shù)的圖象看出函數(shù)的奇偶性,然后逐一核對四個選項即可得到答案.
解答:解:由圖象看出,對應(yīng)的函數(shù)應(yīng)為偶函數(shù),∴α的取值可以是
2
3

故選C.
點評:本題考查了冪函數(shù)的圖象及其指數(shù)的關(guān)系,考查了函數(shù)的性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北岳中高中一輪復(fù)習(xí)理科數(shù)學(xué)滾動測試三解析版 題型:選擇題

如圖是函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是(  )

A.在(-2,1)內(nèi)f(x)是增函數(shù)B.在(1,3)內(nèi)f(x)是減函數(shù)

C.在(4,5)內(nèi)f(x)是增函數(shù)D.在x=2時,f(x)取到極小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖是函數(shù)y=xα的圖象,則α的取值可以是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年上海市十校高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知等軸雙曲線C的兩個焦點F1、F2在直線y=x上,線段F1F2的中點是坐標(biāo)原點,且雙曲線經(jīng)過點(3,).
(1)若已知下列所給的三個方程中有一個是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請確定哪個是等軸雙曲線C的方程,并求出此雙曲線的實軸長;
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運貨物.經(jīng)測算,從P到A、從P到B修建公路的費用都是每單位長度a萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年上海市十校高三(下)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知等軸雙曲線C的兩個焦點F1、F2在直線y=x上,線段F1F2的中點是坐標(biāo)原點,且雙曲線經(jīng)過點(3,).
(1)若已知下列所給的三個方程中有一個是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請確定哪個是等軸雙曲線C的方程,并求出此雙曲線的實軸長;
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運貨物.經(jīng)測算,從P到A、從P到B修建公路的費用都是每單位長度a萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

同步練習(xí)冊答案