已知橢圓C:+=1(a>b>0),左、右兩個(gè)焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),AF1F2為正三角形且周長(zhǎng)為6.

(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;

(2)O為坐標(biāo)原點(diǎn),P是直線(xiàn)F1A上的一個(gè)動(dòng)點(diǎn),|PF2|+|PO|的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

 

【答案】

(1) +=1 e= (2) (,)

【解析】

:(1)由題設(shè)得

解得a=2,b=,c=1.

C的方程為+=1,離心率e=.

(2)直線(xiàn)F1A的方程為y=(x+1),

設(shè)點(diǎn)O關(guān)于直線(xiàn)F1A對(duì)稱(chēng)的點(diǎn)為M(x0,y0),

所以點(diǎn)M的坐標(biāo)為(-,).

|PO|=|PM|,|PF2|+|PO|=|PF2|+|PM||MF2|,

|PF2|+|PO|的最小值為

|MF2|==.

直線(xiàn)MF2的方程為y=(x-1),

y=-(x-1).

所以此時(shí)點(diǎn)P的坐標(biāo)為(,).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和雙曲線(xiàn)C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,給出下列命題:
①對(duì)于任意的正實(shí)數(shù)λ1,曲線(xiàn)C1都有相同的焦點(diǎn);
②對(duì)于任意的正實(shí)數(shù)λ1,曲線(xiàn)C1都有相同的離心率;
③對(duì)于任意的非零實(shí)數(shù)λ2,曲線(xiàn)C2都有相同的漸近線(xiàn);
④對(duì)于任意的非零實(shí)數(shù)λ2,曲線(xiàn)C2都有相同的離心率.
其中正確的為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年陜西卷) (14分)

已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:=1()的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)與橢圓交于、兩點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)南市2010屆高三第二次模擬考試數(shù)學(xué)文 題型:選擇題

(本小題滿(mǎn)分12分)

       已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過(guò)點(diǎn)N(2,-3).

   (1)求橢圓C的方程;

   (2)求橢圓以M(-1,2)為中點(diǎn)的弦所在直線(xiàn)的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案