已知橢圓C:+=1(a>b>0),左、右兩個(gè)焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長(zhǎng)為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)O為坐標(biāo)原點(diǎn),P是直線(xiàn)F1A上的一個(gè)動(dòng)點(diǎn),求|PF2|+|PO|的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(1) +=1 e= (2) (,)
【解析】
解:(1)由題設(shè)得
解得a=2,b=,c=1.
故C的方程為+=1,離心率e=.
(2)直線(xiàn)F1A的方程為y=(x+1),
設(shè)點(diǎn)O關(guān)于直線(xiàn)F1A對(duì)稱(chēng)的點(diǎn)為M(x0,y0),
則⇒
所以點(diǎn)M的坐標(biāo)為(-,).
∵|PO|=|PM|,|PF2|+|PO|=|PF2|+|PM|≥|MF2|,
|PF2|+|PO|的最小值為
|MF2|==.
直線(xiàn)MF2的方程為y=(x-1),
即y=-(x-1).
由⇒
所以此時(shí)點(diǎn)P的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
m2 |
y2 |
n2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年陜西卷) (14分)
已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:=1()的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于、兩點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)南市2010屆高三第二次模擬考試數(shù)學(xué)文 題型:選擇題
(本小題滿(mǎn)分12分)
已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過(guò)點(diǎn)N(2,-3).
(1)求橢圓C的方程;
(2)求橢圓以M(-1,2)為中點(diǎn)的弦所在直線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com