【題目】如圖所示,A,B,C是雙曲線 =1(a>0,b>0)上的三個點,AB經(jīng)過原點O,AC經(jīng)過右焦點F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是( )
A.
B.
C.
D.3
【答案】A
【解析】解:由題意可得在直角三角形ABF中,OF為斜邊AB上的中線,即有|AB|=2|OA|=2|OF|=2c,
設(shè)A(m,n),則m2+n2=c2 ,
又 ﹣ =1,
解得m= ,n= ,
即有A( , ),B(﹣ ,﹣ ),
又F(c,0),
由于BF⊥AC且|BF|=|CF|,
可設(shè)C(x,y),即有 =﹣1,
又(c+ )2+( )2=(x﹣c)2+y2 ,
可得x= ,y=﹣ ,
將C( ,﹣ )代入雙曲線方程,可得
﹣ =1,
化簡可得 (b2﹣a2)=a3 ,
由b2=c2﹣a2 , e= ,
可得(2e2﹣1)(e2﹣2)2=1,
對照選項,代入檢驗可得e= 成立.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年入冬以來,各地霧霾天氣頻發(fā),頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時間段車流量與的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫出散點圖;
(2)試判斷與是否具有線性關(guān)系,若有請求出關(guān)于的線性回歸方程,若沒有,請說明理由;
(3)若周六同一時間段的車流量為60萬輛,試根據(jù)(2)得出的結(jié)論,預(yù)報該時間段的的濃度(保留整數(shù)).
參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.設(shè)p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù), ,則p是q的必要不充分條件
B.若命題 ,則¬p:?x∈R,x2﹣x+1>0
C.奇函數(shù)f(x)定義域為R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實數(shù)a,b的值;
(2)若實數(shù)m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點,E為△ACD內(nèi)的動點(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+ax(a∈R).
(Ⅰ)當(dāng)a=0,求f(x)的最小值;
(Ⅱ)若函數(shù)g(x)=f(x)+lnx在區(qū)間[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)過點P(1,﹣3)恰好能作函數(shù)y=f(x)圖象的兩條切線,并且兩切線的傾斜角互補,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時,求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com