用特征性質(zhì)描述法表示:由北京一個(gè)城市構(gòu)成的集合.
考點(diǎn):集合的表示法
專題:
分析:根據(jù)特征法描述幾何,由北京一個(gè)城市構(gòu)成的集合,表示城市是北京市,故求出答案.
解答: 解:根據(jù)特征法描述幾何,由北京一個(gè)城市構(gòu)成的集合,表示城市是北京市,
故答案為,集合A={城市|北京北京市}
點(diǎn)評(píng):本題主要考查了集合的描述方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=120°,PA=AB=2
2
,點(diǎn)N在線段PD上,且PN=kPD(0<k<1),平面BCN與PA相交于點(diǎn)M,
(Ⅰ)求證:AD∥MN;
(Ⅱ)試確定點(diǎn)N的位置. 使直線BN與平面PAD所成角的正切值為
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:mx-2y+2m=0(m∈R)和橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓C的離心率為
2
2
,連接橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A,B兩點(diǎn),若以線段AB為直徑的圓過(guò)原點(diǎn)O,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在長(zhǎng)方形ABCD中,AB=2BC,E為CD的中點(diǎn).將△AED沿AE折起,使平面ADE⊥平面ABCE,連接DB、DC、EB.
(1)求證:CE∥平面ABD;
(2)求證:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=1,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求二面角D-AC-E的余弦值;
(2)在棱PC上是否存在一點(diǎn)F,使得BF∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O為正方形A1B1C1D1的中心,點(diǎn)P在棱CC1上,且CC1=2PC.
(1)求直線AP與平面BCC1B1所成角的余弦值;
(2)求二面角P-AD1-D的平面角的余弦值;
(3)求點(diǎn)O到平面AD1P的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點(diǎn),AB=BC=2,過(guò)A1,C1,B三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后.得到如圖所示的幾何體ABCD-A1B1C1D1,且這個(gè)幾何體的體積為
40
3

(1)求證:EF∥平面A1B1C1;
(2)求A1A的長(zhǎng);
(3)在線段BC1上是否存在點(diǎn)P,使直線A1P與C1D垂直,如果存在,求線段A1P的長(zhǎng),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,已知三點(diǎn)O(0,0),A(2,
π
2
),B(2
2
,
π
4
).
(Ⅰ)求經(jīng)過(guò)O,A,B的圓C的極坐標(biāo)方程
(Ⅱ)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程
x=-1+acosθ
y=-1+asinθ
(θ是參數(shù)),若圓C1與圓C2相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長(zhǎng)軸長(zhǎng)及離心率;
(Ⅱ)已知M為橢圓C的左頂點(diǎn),直線l過(guò)(1,0)且與橢圓C交于A,B兩點(diǎn)(不與M重合).求證:∠AMB>90°(或者證明△AMB是鈍角三角形)

查看答案和解析>>

同步練習(xí)冊(cè)答案