試題分析:解:(1)當a=18時,f(x)=x
2-4x-16lnx(x>0),所以f'(x)=2x-4-
,由f'(x)>0,解得x>4或一2<x<0,注意到x>0,所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(4,+∞).由f'(x)<0,解得0<x<4或x<-2.注意到x>0,所以函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,4).綜上所述,函數(shù)f(x)的單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0.4).(2)當x∈[e,e
2]時,f(x)=x
2-4x+(2-x)lnx, f'(x)=2x-4+
設g(x)=2x
2-4x+2-a.當a<0時,有△=16-4×2(2-a)=8a<0,此時g(x)>0恒成立,所以f'(x)>0,f(x)在[e,e
2]上單調(diào)遞增,所以f(x)
min=f(e)=e
2-4e+2-a.當a>0時,△=16-4×2(2-a)=8a>0,令f'(x)>0,即2x
2-4x+2-a>0,解得x>1+
或x<1-
令f'(x)<0,即2x
2-4x+2-a<0,解得1-
<x<
.①當
≥e
2,即a≥2(e2-1)2時,f(x)在區(qū)間[e,e
2]上單調(diào)遞減,所以f(x)
min=f(e
2)=e
4-4e2+4-2a;②當e<
<e
2,即2(e-1)
2<a<2(e
2-1)
2時,在區(qū)間[e,
]上單調(diào)遞減,在區(qū)間[
,e
2]上單調(diào)遞增,所以f(x)
min=f(
)=
a-3+(2-a)ln(
);③當
≤e,即0<a≤2(e-1)
2時,以f(x)在區(qū)間[e,e
2]上單調(diào)遞增,所以f(x)
min=f(e)=e
2-4e+2-a.綜上所述,當a≥2(e
2-1)
2時,f(x)
min=e
4-4e
2+4-2a;當2(e-1)
2<a<2(e
2-1)
2時,f(x)
min=
-3+(2-a)ln(
);當a<0或0<a≤2(e-1)
2時,f(x)
min=e
2-4e+2-a.
點評:本題考查函數(shù)的單調(diào)區(qū)間的求法,考查函數(shù)的最小值的求法,綜合性強,難度大,計算繁瑣.解題時要認真審題,注意分類討論思想和等價轉(zhuǎn)化思想的合理運用。