已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱(chēng)主視圖)是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖(或稱(chēng)左視圖)是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
(1)64(2).
解析試題分析:由題設(shè)可知,幾何體是一個(gè)高為4的四棱錐,其底面是長(zhǎng)、寬分別為8和6的矩形,正側(cè)面及其相對(duì)側(cè)面均為底邊長(zhǎng)為8,高為的等腰三角形,左、右側(cè)面均為底邊長(zhǎng)為6,高為的等腰三角形.
(1)幾何體的體積為為.
(2)正側(cè)面及相對(duì)側(cè)面底邊上的高為:,
左、右側(cè)面的底邊上的高為:.
故幾何體的側(cè)面面積為:S = 2×(×8×5+×6×4).
考點(diǎn):三視圖,幾何體的體積
點(diǎn)評(píng):解決該試題的關(guān)鍵是還原幾何體,并根據(jù)體積公式和側(cè)面積公式求解結(jié)論,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在直三棱柱中,,為的中點(diǎn).
(Ⅰ) 若AC1⊥平面A1BD,求證:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的條件下,設(shè)AB=1,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,AC⊥BC,點(diǎn)D是AB的中點(diǎn),側(cè)面BB1C1C是正方形.
(1) 求證AC⊥B1C;(2)求二面角B-CD-B1平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,在直三棱柱中,,分 別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且為的中點(diǎn).
求證:(1)平面平面(2)直線平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,
⑵ 證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,M是BD的中點(diǎn),N是BC的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)直三棱柱中,點(diǎn)M、N分別為線段的中點(diǎn),平面側(cè)面
(1)求證:MN//平面 (2)證明:BC平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
在三棱錐中,和都是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(1)求證:平面;
(2)求證:平面⊥平面;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com