如圖,在棱長(zhǎng)為1的正方體中.

(1)求異面直線(xiàn)所成的角;
(2)求證平面⊥平面

(1)(2)先證即可得證.

解析試題分析:
(1)如圖,,
就是異面直線(xiàn)所成的角.
連接,在中,,則,
因此異面直線(xiàn)所成的角為.                           
(2) 由正方體的性質(zhì)可知 , 故,           
又 正方形中,, ∴ ;     
,    ∴ 平面.   
考點(diǎn):向量語(yǔ)言表述面面的垂直、平行關(guān)系;用空間向量求直線(xiàn)間的夾角、距離.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是向量語(yǔ)言表述直線(xiàn)的垂直關(guān)系,用空間向量求直線(xiàn)間的夾角,其中解法一(幾
何法)的關(guān)鍵是熟練掌握空間線(xiàn)面關(guān)系的判定、性質(zhì)及相互轉(zhuǎn)換;解法二(向量法)的關(guān)鍵是建立恰當(dāng)?shù)?br />空間坐標(biāo)系,將空間線(xiàn)面關(guān)系問(wèn)題轉(zhuǎn)化為向量夾角問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與分別相切于點(diǎn)、,與交于點(diǎn)),將△繞直線(xiàn)旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體。

(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線(xiàn)旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,,,,分別是的中點(diǎn).

(1)求證: 底面;
(2)求證:平面平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線(xiàn)所成角的余弦值;
(Ⅲ)探究在上是否存在點(diǎn)Q,使得,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
如圖,已知圓錐的軸截面ABC是邊長(zhǎng)為的正三角形,O是底面圓心.

(1)求圓錐的表面積;
(2)經(jīng)過(guò)圓錐的高的中點(diǎn)作平行于圓錐底面的截面,求截得的圓臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱(chēng)主視圖)是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖(或稱(chēng)左視圖)是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.

(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
已知平面,且是垂足,

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)是,側(cè)棱長(zhǎng)是3,點(diǎn)E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.

(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題9分)如圖是一個(gè)空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長(zhǎng)為4cm的正三角形、俯視圖中正方形的邊長(zhǎng)為4cm,

(1)畫(huà)出這個(gè)幾何體的直觀(guān)圖(不用寫(xiě)作圖步驟);
(2)請(qǐng)寫(xiě)出這個(gè)幾何體的名稱(chēng),并指出它的高是多少;
(3)求出這個(gè)幾何體的表面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案