考點(diǎn):數(shù)列的函數(shù)特性,數(shù)列的求和,數(shù)列與不等式的綜合
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)根據(jù)a
n+1=S
n+1-S
n,得到
=
,再利用累乘法得到數(shù)列{a
n}的通項(xiàng)公式;
(2)利用放縮法,當(dāng)n≥3時(shí),
=
<
=
-
,故成立,再驗(yàn)證n=1,n=2時(shí)也成立;
(3)先兩邊取自然對(duì)數(shù),再構(gòu)造函數(shù)令f(x)=
,利用導(dǎo)數(shù)求出函數(shù)的最大值,繼而求出數(shù)列{b
n}的最大值.
解答:
解:(1)∵S
n=
a
n,
∴S
n+1=
a
n+1,
∴a
n+1=S
n+1-S
n=
a
n+1-
a
n,
∴
=
,
∴
•
…
=
×
×…×
=n,
∵a
1=1,
∴a
n=n,
(2)∵a
n=n,
∴
=
,
∵當(dāng)n≥3時(shí),
=
<
=
-
+
+…+
=
+
+…+
<1+
+
+…+
=1+
+
-
+…+
-
=
-
<
當(dāng)n=1時(shí),
=1<
,
當(dāng)n=2時(shí),
+
=1+
<
綜上所述:
+++…+<;
(3)∵數(shù)列{b
n}的各項(xiàng)都為正數(shù),且(b
n)
n+1=a
n+1=n+1
兩邊取自然對(duì)數(shù),得
(n+1)lnb
n=ln(n+1),
∴l(xiāng)nb
n=
,
令t=n+1,
∴l(xiāng)nb
n=
,
令f(x)=
,
∴f′(x)=
令f′(x)=0,解得x=e-1,
當(dāng)x>e-1時(shí),f′(x)<0,函數(shù)遞減,
當(dāng)x<e-1時(shí),f′(x)>0,函數(shù)遞增,
∴當(dāng)x=e-1時(shí),函數(shù)f(x)
max=f(e-1)=
∴1<e-1<2,
∴當(dāng)n=1或n=2時(shí),lnb
n取的最大值,
當(dāng)n=1時(shí),b
1=
,
當(dāng)n=2時(shí),b
2=
,
∵
<
,
∴當(dāng)n=2時(shí),數(shù)列{b
n}的最大值,最大值為
.
點(diǎn)評(píng):本題考查利用累乘法求出數(shù)列的通項(xiàng),放縮法證明不等式成立,構(gòu)造函數(shù)法,求數(shù)列的最值,屬于中檔題