給出函數(shù)f(x)=
(
1
2
)x
  x≥3
f(x+1)
 x<3
,則f(log23)=
1
12
1
12
分析:由函數(shù)f(x)=
(
1
2
)x
  x≥3
f(x+1)
 x<3
,知f(log23)=f(log23+1)=f(log23+2)=
1
2
log23+2
,由此能求出其結(jié)果.
解答:解:∵函數(shù)f(x)=
(
1
2
)x
  x≥3
f(x+1)
 x<3
,
∴f(log23)=f(log23+1)=f(log23+2)=
1
2
log23+2
=
1
3
×
1
4
=
1
12

故答案為:
1
12
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)f(x)=
(
1
3
)
x
,x≥4
f(x+1),x<4
,則f(log34)=
1
108
1
108

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)在研究此函數(shù)時(shí)給出以下命題:
①函數(shù)f(x)的值域?yàn)閇-1,1];     
②若x1≠x2,則一定有f(x1)≠f(x2);
③對(duì)任意的x1,x2∈R,存在x0,使得f(x1)+f(x2)=2f(x0)成立;
④若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述命題中正確的是
②③
②③
.(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,給出函數(shù)f(x)=Acos(ωx+φ)(A>0,|φ|<
π2
)
圖象的一部分,則f(x)的解析式為f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別給出命題:
①函數(shù)f(x)的值域?yàn)?span id="dtfrfnf" class="MathJye">(-
1
2
1
2
);
②若x1≠x2,則一定有f(x1)≠f(x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案