16.第三象限的角的集合可表示為( 。
A.{α|90°<α<180°}B.{α|180°<α<270°}
C.{α|90°+k•360°<α<180°+k•360°,k∈Z}D.{α|180°+k•360°<α<270°+k•360°,k∈Z}

分析 直接利用象限角的表示方法寫出結(jié)果即可.

解答 解:第三象限的角的集合可表示為:{α|180°+k•360°<α<270°+k•360°,k∈Z}.
故選:D.

點(diǎn)評(píng) 本題考查象限角的表示,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,an+1-an=2,等比數(shù)列{bn}滿足b1=a1,b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知函數(shù)f(x)定義在(-1,1)上,對(duì)于任意的x,y∈(-1,1),有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當(dāng)x<0時(shí),f(x)>0;
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(-1,1)上是減函數(shù);
(3)若函數(shù)f(x)=1n$\frac{1-x}{1+x}$,證明:f(x)+f(y)=f($\frac{x+y}{1+xy}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{201{5}^{x}}{201{5}^{x}+\sqrt{2015}}$.
(1)求f(a)+f(1-a)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線2x+2y+1=0,x+y+2=0之間的距離是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:解答題

中,角的對(duì)邊分別是,已知

(1)求的值;

(2)若,求邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2cos2x-1.
(Ⅰ)求函數(shù)f(x)最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[$\frac{π}{4},\frac{3π}{4}$]上的最小值和此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn=n2
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=$\frac{{S}_{n}+156}{{a}_{n}+1}$,求數(shù)列{bn}中的最小項(xiàng)及取得最小項(xiàng)時(shí)n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案