已知f(x),g(x)在[m,n]上可導(dǎo),且(x)<(x),則當m<x<n時,有
f(x)<g(x)
f(x)>g(x)
f(x)+g(n)<g(x)+f(n)
f(x)+g(m)<g(x)+f(m)
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:013
已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當x=0時的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是
A.0是f(x)的極大值,也是g(x)的極大值
B.0是f(x)的極小值,也是g(x)的極小值
C.0是f(x)的極大值,但不是g(x)的極值
D.0是f(x)的極小值,但不是g(x)的極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012高考數(shù)學(xué)二輪名師精編精析(3):函數(shù)性質(zhì) 題型:013
已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當x=0時的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是
0是f(x)的極大值,也是g(x)的極大值
0是f(x)的極小值,也是g(x)的極小值
0是f(x)的極大值,但不是g(x)的極值
0是f(x)的極小值,但不是g(x)的極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年西城區(qū)抽樣理)(14分)
已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x) = m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).
設(shè)f (x)=x2+ax,g(x)=x+b(R),l(x)= 2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設(shè),若h (x)為偶函數(shù),求;
(Ⅱ)設(shè),若h (x)同時也是g(x)、l(x) 在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
則f(x)·g(x)>0的解集是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m,n使得h(x)=mf(x)+ng(x),那么稱h(x)為f(x)、g(x)在R上生成的一個函數(shù),設(shè)f(x)=x2+ax,g(x)=x+b,(a,b∈R),r(x)=2x2+3x-1,h(x)為f(x)、g(x)在R上生成的一個二次函數(shù)。
(1)設(shè)a=1,b=2,若h(x)為偶函數(shù),求h();
(2)設(shè)b>0,若h(x)同時也是g(x)、r(x)在R上生成的一個函數(shù),求a+b的最小值;
(3)試判斷h(x)能否為任意一個二次函數(shù),并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com