【題目】化簡計(jì)算:
(1)化簡: .
(2)已知:sinαcosα= ,且 <α< ,求cosα﹣sinα的值.
【答案】
(1)解:原式= = =﹣1
(2)解:∵(sinα﹣cosα)2=sin2α﹣2sinαcosα+cos2α
=(sin2α+cos2α)﹣2sinαcosα;
又∵sin2α+cos2α=1,sinαcosα=
∴(sinα﹣cosα)2=1﹣2× =
∵ <α<
∴cosα﹣sinα=﹣
【解析】(1)原式化簡成平方和,即可求解;(2)根據(jù)sin2α+cos2α=1、完全平方差公式(a﹣b)2=a2﹣2ab+b2解答sinα﹣cosα的值即可.
【考點(diǎn)精析】掌握同角三角函數(shù)基本關(guān)系的運(yùn)用是解答本題的根本,需要知道同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: ,F(xiàn)1 , F2分別為左右焦點(diǎn),在橢圓C上滿足條件 的點(diǎn)A有且只有兩個(gè)
(1)求橢圓C的方程
(2)若過點(diǎn)F2的兩條相互垂直的直線l1與l2 , 直線l1與曲線y2=4x交于兩點(diǎn)M、N,直線l2與橢圓C交于兩點(diǎn)P、Q,求四邊形PMQN面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點(diǎn)E是B1C1的中點(diǎn),求證:AE∥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)樣本M的數(shù)據(jù)是x1 , x2 , ,xn , 它的平均數(shù)是5,另一個(gè)樣本N的數(shù)據(jù)x12 , x22 , ,xn2它的平均數(shù)是34.那么下面的結(jié)果一定正確的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + 與 ﹣3 垂直;
當(dāng)k=時(shí),(2)k + 與 ﹣3 平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)有劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的“徽率”.某同學(xué)利用劉徽的“割圓術(shù)”思想設(shè)計(jì)了一個(gè)計(jì)算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)( )
A.2.598
B.3.106
C.3.132
D.3.142
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)設(shè) ,求方程f(x)=2的根;
(Ⅱ)設(shè) ,函數(shù)g(x)=f(x)﹣2,已知b>3時(shí)存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一個(gè)零點(diǎn),求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大小;
(2)若△ABC的面積為為 且b= ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asinxbcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( x)是( )
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com