【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點E是B1C1的中點,求證:AE∥平面ADC1 .
【答案】
(1)證明:∵在正三棱柱ABC﹣A1B1C1中,點D在邊BC上,AD⊥C1D,
∴CC1⊥平面ABC,又AD平面ABC,∴AD⊥CC1,
又C1D∩CC1=C1,∴AD⊥平面BCC1B1.
AD面ADC1,∴平面ADC1⊥平面BCC1B1
(2)解:∵AD⊥平面BCC1B1,∴AD⊥BC,
∵在正三棱柱ABC﹣A1B1C1中,AB=BC=AC,∴D是BC中點,
連結ED,∵點E是C1B1的中點,
∴AA1∥DE且AA1=DE,∴四邊形AA1DE是平行四邊形,
∴A1E∥AD,
又A1E面ADC1,AD平面ADC1.
∴A1E∥平面ADC1.
【解析】(1)推導出AD⊥C1D,從而CC1⊥平面ABC,進而AD⊥CC1,由此能證明AD⊥平面BCC1B1.即平面ADC1⊥平面BCC1B1(2)由AD⊥BC,得D是BC中點,連結ED,得四邊形AA1DE是平行四邊形,由此能證明A1E∥平面ADC1.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關知識可以得到問題的答案,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】已知銳角△ABC的三個內角A,B,C的對邊分別為a,b,c,且 =(a,b+c), .
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC. (Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,C> ,若函數(shù)y=f(x)在[0,1]上為單調遞減函數(shù),則下列命題正確的是( )
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2對任意x∈[0,2π]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=( )
A.5
B.9
C.log345
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次測試的學生人數(shù)是多少?
(3)在這次測試中,學生跳繩次數(shù)的中位數(shù)落在第幾小組內?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com