16.已知$f(\frac{2}{x}+1)=x+3$,則f(-1)=2.

分析 根據(jù)函數(shù)解析式,進行代入求解即可.

解答 解:由$\frac{2}{x}$+1=-1,即由$\frac{2}{x}$=-2,即x=-1,
即f(-1)=f($\frac{2}{-1}+1$)=-1+3=2,
故答案為:2.

點評 本題主要考查函數(shù)值的計算,根據(jù)條件進行轉化即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.若存在實數(shù)m,n,使得$\left\{\begin{array}{l}{\frac{1}{{e}^{x}}-\frac{a}{x}≥0}\\{x>0}\end{array}\right.$的解集為[m,n],則a的取值范圍為( 。
A.($\frac{1}{{e}^{x}}$,e)B.(0,$\frac{1}{{e}^{x}}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)=|2x-2|+1,g(x)=x2+2x-$\frac{1}{2}$.
(1)解不等式f(x)≥3-x;
(2)若對?x∈R,$\frac{1}{2}$f(x)+|x+1|>g(m)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ax(a>0且a≠0)經(jīng)過點(2,4).
(1)求a的值;
(2)畫出函數(shù)g(x)=a|x|圖象,并寫出該函數(shù)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“a=2”是“函數(shù)f(x)=x2-2ax-3在區(qū)間[2,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.對于平面α和共面的直線m、n,下列命題中真命題是③(填序號).
①若m⊥α,m⊥n,則n∥α;
②若m∥α,n∥α,則m∥n;
③若m?α,n∥α,則m∥n;
④若m、n與α所成的角相等,則m∥n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在用“五點法”畫函數(shù)f(x)=Asinx(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時,列表并填人了部分數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x
Asin(ωx+φ)02-20
(1)請將上表中①②③④處數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
  (2)將y=f(x)圖象上所有點的橫坐標縮短為原來的$\frac{2}{3}$,再將所得圖象向左平移π個單位,得到y(tǒng)=g(x)的圖象,求g(x)在z∈[-2π,2π]時的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[0,1]上單調(diào)遞增,設a=f(3),b=f(1.2),c=f(2),則a,b,c大小關系是( 。
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線l經(jīng)過點P(-1,7),與圓C:x2+(y-4)2=5相交得弦AB,若弦AB是該圓中經(jīng)過點P的所有弦中最長的弦,則直線l的方程為3x+y-4=0.

查看答案和解析>>

同步練習冊答案