已知數(shù)列{an}中,a1=1,a2=a-1(a≠0且a≠1),其前n項(xiàng)和為Sn,且當(dāng)n≥2時(shí),
(Ⅰ)求證:數(shù)列{Sn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若a=4,令,記數(shù)列{bn}的前n項(xiàng)和為Tn.設(shè)λ是整數(shù),問是否存在正整數(shù)n,使等式成立?若存在,求出n和相應(yīng)的λ值;若不存在,請(qǐng)說明理由.
【答案】分析:(Ⅰ)由an=sn-sn-1得:=-化簡(jiǎn)得Sn2=Sn-1Sn+1(n≥2)得到數(shù)列{Sn}是等比數(shù)列;(Ⅱ)由(1)得等比數(shù)列{Sn}的首項(xiàng)為1,公比為a,求出sn,利用an=sn-sn-1得到即可;
(Ⅲ)根據(jù)a=4,令,化簡(jiǎn)得到bn的通項(xiàng),并表示出前n項(xiàng)和公式Tn,代入到等式中求出n和相應(yīng)的λ值.
解答:解:(Ⅰ)當(dāng)n≥2時(shí),
化簡(jiǎn)得Sn2=Sn-1Sn+1(n≥2),
又由S1=1≠0,S2=a≠0,可推知對(duì)一切正整數(shù)n均有Sn≠0,
∴數(shù)列{Sn}是等比數(shù)列.
(Ⅱ)由(Ⅰ)知等比數(shù)列{Sn}的首項(xiàng)為1,公比為a,
∴Sn=an-1
當(dāng)n≥2時(shí),an=Sn-Sn-1=(a-1)an-2,
又a1=S1=1,

(Ⅲ)當(dāng)a=4,n≥2時(shí),an=3×4n-2,
此時(shí)=,

,
當(dāng)n≥2時(shí),
=
若n=1,則等式,不是整數(shù),不符合題意.
若n≥2,則等式
∵λ是整數(shù),∴4n-1+1是5的因數(shù).
∴當(dāng)且僅當(dāng)n=2時(shí),是整數(shù),∴λ=4
綜上所述,當(dāng)且僅當(dāng)λ=4時(shí),存在正整數(shù)n=2,使等式成立.
點(diǎn)評(píng):考查學(xué)生利用等比數(shù)列求和公式的能力,數(shù)列求和公式的運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案