12.命題“a和b都不是奇數(shù)”的否定是(  )
A.a和b至少有一個奇數(shù)B.a和b至多有一個是奇數(shù)
C.a是奇數(shù),b不是奇數(shù)D.a和b都是奇數(shù)

分析 直接利用否定的定義,寫出結(jié)果即可.

解答 解:命題“a和b都不是奇數(shù)”的否定是:a和b至少有一個奇數(shù).
故選:A.

點評 本題考查的知識點是命題的否定,全(特)稱命題是新教材的新增內(nèi)容,其中全(特)稱命題的否定是本考點的重要考查形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z=$\frac{(-1+3i)(1-i)-(1+3i)}{i}$,ω=z+ai(a∈R),當(dāng)|$\frac{w}{z}$|≤$\sqrt{2}$時,a的取值范圍是[1$-\sqrt{3}$,$1+\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+bx+c(a、b、c∈R)滿足:f(2)=2,f(-2)=0.
(1)求實數(shù)b的值;
(2)若對任意實數(shù)x,都有f(x)≥x成立,求函數(shù)f(x)的表達(dá)式;
(3)在(2)的條件下,設(shè)g(x)=f(x)-$\frac{m}{2}$x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=$\frac{1}{4}$的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在矩形ABCD中,已知$AB=\sqrt{3},AD=2$,點E是BC的中點,點F在CD上,若$\overrightarrow{AB}•\overrightarrow{AF}$=$\sqrt{3}$,則$\overrightarrow{AE}•\overrightarrow{BF}$的值是$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.記函數(shù)f(x)=ex的圖象為C,函數(shù)g(x)=kx-k的圖象記為l.
(1)若直線l是曲線C的一條切線,求實數(shù)k的值.
(2)當(dāng)x∈(1,3)時,圖象C恒在l上方,求實數(shù)k的取值范圍.
(3)若圖象C與l有兩個不同的交點A、B,其橫坐標(biāo)分別是x1、x2,設(shè)x1<x2,求證:x1x2<x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于函數(shù)f(x)=2x的圖象變換正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}、{bn}中的前n項和分別為Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{10}}{_{10}}$=(  )
A.$\frac{20}{31}$B.$\frac{19}{29}$C.$\frac{17}{28}$D.$\frac{16}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,$C=\frac{π}{3}$,則cos2A+cos2B的最大值和最小值分別是(  )
A.$1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$B.$\frac{1}{2}$,$\frac{5}{4}$C.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{m}+{y^2}$=1的一個焦點為$({\frac{1}{4},0})$,則m的值是( 。
A.$\frac{1}{2}$B.$\frac{17}{16}$C.$\frac{1}{4}$D.4

查看答案和解析>>

同步練習(xí)冊答案