4.等差數(shù)列{an}、{bn}中的前n項(xiàng)和分別為Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{10}}{_{10}}$=( 。
A.$\frac{20}{31}$B.$\frac{19}{29}$C.$\frac{17}{28}$D.$\frac{16}{27}$

分析 由等差數(shù)列的性質(zhì)得$\frac{{a}_{10}}{_{10}}$=$\frac{\frac{19}{2}({a}_{1}+{a}_{19})}{\frac{19}{2}(_{1}+_{19})}$=$\frac{{S}_{19}}{{T}_{19}}$,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}、{bn}中的前n項(xiàng)和分別為Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,
∴$\frac{{a}_{10}}{_{10}}$=$\frac{2{a}_{10}}{2_{10}}$=$\frac{\frac{19}{2}({a}_{1}+{a}_{19})}{\frac{19}{2}(_{1}+_{19})}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{2×19}{3×19+1}$=$\frac{19}{29}$.
故選:B.

點(diǎn)評 本題考查兩個等差數(shù)列的等10項(xiàng)比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,其角A,B,C的對邊分別為a,b,c,求證:(a+b)-1+(b+c)-1=3(a+b+c)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個母線長為6的圓錐(如圖)的底部圓周上有一昆蟲(M點(diǎn)),如果它沿著圓錐的側(cè)面爬行一周回到原來的位置的最短路程恰好為6,那么該圓錐的底面半徑是多少?圓錐的高是多少?請求出該圓錐的側(cè)面積與體積.(提示:平面上兩點(diǎn)間的線段最短)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“a和b都不是奇數(shù)”的否定是(  )
A.a和b至少有一個奇數(shù)B.a和b至多有一個是奇數(shù)
C.a是奇數(shù),b不是奇數(shù)D.a和b都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.命題P:存在實(shí)數(shù)x,x2-2cx+c<0;命題Q:|x-1|-x+2c>0對任意x∈R恒成立.若P或Q為真,P且Q為假,試求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,設(shè)E,F(xiàn)分別是Rt△ABC的斜邊BC上的兩個三等分點(diǎn),已知AB=3,AC=6,則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。 
A.8B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=(1+x)2-mln(1+x),g(x)=x2+x+a.
(Ⅰ)當(dāng)a=0時,f(x)≥g(x)在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)m=2時,若函數(shù)h(x)=f(x)-g(x)在[0,2]上恰有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某公司生產(chǎn)一種商品的固定成本為200元,每生產(chǎn)一件商品需增加投入10元,已知總收益滿足函數(shù):g(x)=$\left\{\begin{array}{l}{40x-\frac{1}{2}{x}^{2},0≤x≤40}\\{800,x>40}\end{array}\right.$其中x是商品的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量的函數(shù)f(x)(總收益=總成本+利潤);
(2)當(dāng)月產(chǎn)量為何值時公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}m{x^2}-8ax+n,x<1\\ log_a^x\begin{array}{l}{\begin{array}{l},{x≥1}\end{array}}\end{array}\end{array}\right.$,其中m為函數(shù)$g(x)=2x+\sqrt{x-1}$的最小值,n為函數(shù)$h(x)={3^{1-{x^2}}}$的最大值,且對任意x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_1}-{x_2}}}>0$成立,則實(shí)數(shù)a的取值范圍是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.$[\frac{5}{8},1)$D.$[\frac{1}{2},\frac{5}{8}]$

查看答案和解析>>

同步練習(xí)冊答案