A. | 重心 | B. | 外心 | C. | 內(nèi)心 | D. | 垂心 |
分析 一條側(cè)棱就垂直于另外兩條側(cè)棱所組成的面,即垂直于在面上的底面的一條邊,過頂點(diǎn)向底面做垂線,連接底面的頂點(diǎn)和垂足,根據(jù)三垂線定理得到連線是高線,得到三條高線的交點(diǎn)是垂心.
解答 解:用平面在正方體上截下一個三棱錐,以原來正方形的那個頂點(diǎn)作為三棱錐的頂點(diǎn),
則三棱錐的三條側(cè)棱中,每兩條之間的夾角都是90°,
則三條側(cè)棱兩兩垂直,
即SB⊥SA,SB⊥SC,
∵SA∩SC=S,
∴SB⊥面SAC,
∵AC?面SAC,
∴SB⊥AC,
過S向底面做垂線,垂足為O,連接BO,并延長交AC于D,
由三垂線定理知BD⊥AC,即BD 是三角形的高線,
∴三棱錐的頂點(diǎn)在底面的射影是底面三角形的垂心,
故選:D
點(diǎn)評 本題考查棱錐的結(jié)構(gòu)特征,考查邏輯思維能力和空間思維能力,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | -$\sqrt{2}$ | 2 | $\sqrt{6}$ | 9 |
y | $\sqrt{3}$ | -$\sqrt{2}$ | -1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2cos$\frac{πt}{6}$+2.5 | B. | y=-2sin$\frac{πt}{6}$+2.5 | C. | y=-2cos$\frac{πt}{3}$+2.5 | D. | y=-2sin$\frac{πt}{3}$+2.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{15}$ | B. | $\frac{1}{90}$ | C. | $\frac{1}{180}$ | D. | $\frac{1}{360}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | On隨著n的增大而增大 | B. | On隨著n的增大而減小 | ||
C. | 隨著n的增大,On先增大后減小 | D. | 隨著n的增大,On先減小后增大 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}x=sint\\ y={cos^2}t\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=tanφ\\ y=1-{tan^2}φ\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}x=\sqrt{1-t}\\ y=t\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=cosθ}\\{y=si{n}^{2}θ}\end{array}\right.$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com