5.用平面在正方體上截下一個三棱錐,以原來正方體的那個頂點(diǎn)作為三棱錐的頂點(diǎn),則該頂點(diǎn)在三棱錐的底面上的射影是這個三角形的( 。
A.重心B.外心C.內(nèi)心D.垂心

分析 一條側(cè)棱就垂直于另外兩條側(cè)棱所組成的面,即垂直于在面上的底面的一條邊,過頂點(diǎn)向底面做垂線,連接底面的頂點(diǎn)和垂足,根據(jù)三垂線定理得到連線是高線,得到三條高線的交點(diǎn)是垂心.

解答 解:用平面在正方體上截下一個三棱錐,以原來正方形的那個頂點(diǎn)作為三棱錐的頂點(diǎn),
則三棱錐的三條側(cè)棱中,每兩條之間的夾角都是90°,
則三條側(cè)棱兩兩垂直,
即SB⊥SA,SB⊥SC,
∵SA∩SC=S,
∴SB⊥面SAC,
∵AC?面SAC,
∴SB⊥AC,
過S向底面做垂線,垂足為O,連接BO,并延長交AC于D,
由三垂線定理知BD⊥AC,即BD 是三角形的高線,
∴三棱錐的頂點(diǎn)在底面的射影是底面三角形的垂心,
故選:D

點(diǎn)評 本題考查棱錐的結(jié)構(gòu)特征,考查邏輯思維能力和空間思維能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N+),且a1=2,bn=log3(an+1).
(1)證明:數(shù)列{an+1}為等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C1,拋物線C2的焦點(diǎn)均在x軸上,從兩條曲線上各取兩個點(diǎn),將其坐標(biāo)混合記錄于下表中:
x-$\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程.
(2)過橢圓C1右焦點(diǎn)F的直線l與此橢圓相交于A,B兩點(diǎn),若點(diǎn)P為直線x=4上任意一點(diǎn),試證:直線PA,PF,PB的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,某大風(fēng)車的半徑為2m,每6s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面0.5 m.風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動t(s)后與地面的距離為h(m),則函數(shù)h=f(t)的關(guān)系式(  )
A.y=-2cos$\frac{πt}{6}$+2.5B.y=-2sin$\frac{πt}{6}$+2.5C.y=-2cos$\frac{πt}{3}$+2.5D.y=-2sin$\frac{πt}{3}$+2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C1、C2的極坐標(biāo)方程分別為$ρcos(θ-\frac{π}{3})=1$,ρ=1.
(1)寫出曲線C1、C2的直角坐標(biāo)方程.
(2)判斷曲線C1、C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解不等式|x-1|+|2x+1|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“五一”期間,三個家庭(每家均為一對夫婦和一個孩子)去“撫順三塊石國家森林公園”游玩,在某一景區(qū)前合影留念,要求前排站三個小孩,后排為三對夫婦,則每隊(duì)夫婦均相鄰,且小孩恰與自家父母排列的順序一致的概率( 。
A.$\frac{1}{15}$B.$\frac{1}{90}$C.$\frac{1}{180}$D.$\frac{1}{360}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{e}$和$\overrightarrow{f}$是互相垂直的單位向量,向量$\overrightarrow{{a}_{n}}$滿足:$\overrightarrow{e}•\overrightarrow{{a}_{n}}$=n,$\overrightarrow{f}•\overrightarrow{{a}_{n}}$=2n,n∈N*.設(shè)θn為$\overrightarrow{{a}_{n+1}}$-$\overrightarrow{{a}_{n}}$和$\overrightarrow{{a}_{n+2}}$-$\overrightarrow{{a}_{n+1}}$的夾角,則( 。
A.On隨著n的增大而增大B.On隨著n的增大而減小
C.隨著n的增大,On先增大后減小D.隨著n的增大,On先減小后增大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.能化為普通方程x2+y-1=0的參數(shù)方程是(  )
A.$\left\{\begin{array}{l}x=sint\\ y={cos^2}t\end{array}\right.$B.$\left\{\begin{array}{l}x=tanφ\\ y=1-{tan^2}φ\end{array}\right.$
C.$\left\{\begin{array}{l}x=\sqrt{1-t}\\ y=t\end{array}\right.$D.$\left\{\begin{array}{l}{x=cosθ}\\{y=si{n}^{2}θ}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案