分析 (Ⅰ)設(shè)心為(x0,5-3x0),則${r^2}={x_0}^2+{(5-3{x_0})^2}={({x_0}-3)^2}+{(5-3{x_0}+1)^2}$,可得圓心和半徑,從而求得圓的方程.
(Ⅱ)分類討論,設(shè)出直線的方程,求出圓心到直線l的距離,利用勾股定理建立方程,即可求直線l的方程.
解答 解:(I)設(shè)圓心為(x0,5-3x0),則${r^2}={x_0}^2+{(5-3{x_0})^2}={({x_0}-3)^2}+{(5-3{x_0}+1)^2}$
解得${x_0}=\frac{5}{3},r=\frac{5}{3}$,所以圓的方程:${(x-\frac{5}{3})^2}+{y^2}=\frac{25}{9}$-----------------(3分)
(II)當(dāng)直線l垂直于x軸時,方程為x=1,交點(diǎn)為$(1,\frac{{\sqrt{21}}}{3}),(1,-\frac{{\sqrt{21}}}{3})$,弦長為$\frac{{2\sqrt{21}}}{3}$
符合題意-----------------(4分)
當(dāng)直線l不垂直于x軸時,設(shè)方程為y-1=k(x-1),
由弦心距三角形得$\frac{{|\frac{5}{3}k+1-k|}}{{\sqrt{{k^2}+1}}}=\sqrt{{{(\frac{5}{3})}^2}-{{(\frac{{\sqrt{21}}}{3})}^2}}$----------(6分)
解得$k=-\frac{5}{12}$,----------(7分)
所以方程為5x+12y-17=0,綜上l的方程為x=1或5x+12y-17=0----------(8分)
點(diǎn)評 本題考查圓的標(biāo)準(zhǔn)方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,確定圓心坐標(biāo)與半徑是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
有關(guān)系 | 無關(guān)系 | 不知道 | |
40歲以下 | 800 | 450 | 200 |
40歲以上(含40歲) | 100 | 150 | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(2-x)1n2 | B. | 2-x•f′(2-x)1n2 | C. | -2-x•f′(2-x)1n2 | D. | -2-x•f′(2-x)1og22 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com