圖1-1-5
(1)求點P的軌跡方程;
(2)經過點C的直線l與點P的軌跡交于M、N兩點,且點C分所成比等于2∶3,求直線l的方程.
思路分析:先根據圓切線的定義,可得到點P的軌跡是橢圓,然后建立適當的坐標系求出點P的軌跡方程;根據定比分點坐標公式,找出相關點的坐標,列出方程組求點M、N的坐標,從而求出直線方程.
解:(1)∵|PE|=|PD|,|BD|=|BA|,|CE|=|CA|,
∴|PB|+|PC|=|PD|+|DB|+|CE|-|PE|=|BD|+|CE|=|AB|+|CA|=18>6=|BC|.
∴P點軌跡是以B、C為焦點,長軸長等于18的橢圓.
以B、C兩點所在直線為x軸,線段BC的垂直平分線為y軸建立直角坐標系,則可設橢圓的方程是=1(a>b>0).
∵a=9,c=3,∴b2=72.
∴P點的軌跡方程是=1(y≠0).
(2)設M(x1,y1)、N(x2,y2),
∵C(3,0)分MN所成的比為,
∴∴=1.
∴①
又=1,②
由①②消去y2,得=1.
解得x2=-3,y2=±8,即N(-3,±8).
∴由C、N可得直線的方程是4x+3y-12=0或4x-3y-12=0.
科目:高中數學 來源:2014屆安徽省宿州市高二第二次月考數學試卷(解析版) 題型:選擇題
某商場在國慶黃金周的促銷活動中,對10月2日9時至14時的銷售額進行統計,其頻率分布直方圖如圖1所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售額為( )
A.6萬元 B.8萬元 C.10萬元 D.12萬元
查看答案和解析>>
科目:高中數學 來源:2010年陜西省高二第一學期期中考試數學卷 題型:選擇題
某商場在國慶黃金周的促銷活動中,對10月2日9時至14時的銷售額進行統計,其頻率分布直方圖如圖1所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售額為( )
A. 6萬元 B. 8萬元 C. 10萬元 D. 12萬元
查看答案和解析>>
科目:高中數學 來源:2010年廣東省高二上學期10月月考文科數學卷 題型:選擇題
某商場在國慶黃金周的促銷活動中,對10月2日9時至14時的銷售額進行統計,其頻率分布直方圖如圖1所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售額為( )
A. 6萬元 B. 8萬元 C. 10萬元 D. 12萬元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com