已知(1-2x)n的展開式中,二項式系數(shù)的和為64,則它的二項展開式中,系數(shù)最大的是第
5
5
項.
分析:根據(jù)題意,求出n的值,確定二項展開式的系數(shù)最大在奇數(shù)項,通過
rk≥rk+2
rkrk-2
代入數(shù)據(jù),解可得k=4,即可得答案.
解答:解:因為(1-2x)n的展開式中,二項式系數(shù)的和為64,
所以2n=64,所以n=6,二項展開式的系數(shù)最大在奇數(shù)項,
設二項展開式中Tk+1項的系數(shù)最大.則
rk≥rk+2
rkrk-2

C
r
6
(-2)r
C
r+2
6
(-2)r+2
C
r
6
(-2)r
C
r-2
6
(-2)r-2

解得r=4,
故其展開式中系數(shù)最大的項第5項.
故答案為:5.
點評:本題考查二項式定理的應用,涉及二項展開式中二項式系數(shù)和與系數(shù)和問題,容易出錯.要正確區(qū)分這兩個概念.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知(1+2x)n的二項展開式中,某一項的系數(shù)是它前一項系數(shù)的2倍,是它后一項系數(shù)的
56

(1)求n的值;
(2)求(1+2x)n的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、已知(1+2x)n的展開式中,所有項的系數(shù)之和等于81,那么這個展開式中x3的系數(shù)是
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1+2x)n的展開式中,第六項和第七項的二項式系數(shù)最大.
(1)求n的值;
(2)求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南充三模)已知(1-2x)n的展開式中只有第3項的二項式系數(shù)最大,則展開式的各項系數(shù)和等于
1
1

查看答案和解析>>

同步練習冊答案