3.函數(shù)y=2x3-6x2-18x-7在區(qū)間[1,4]上的最小值為(  )
A.-64B.-51C.-56D.-61

分析 求出原函數(shù)的導(dǎo)函數(shù),求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)區(qū)間[1,4]分段,利用導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)得到原函數(shù)的單調(diào)性,從而求出極小值點(diǎn),得到該題的最小值.

解答 解:由y=2x3-6x2-18x-7,得y′=6x2-12x-18,
由6x2-12x-18=0,解得:x1=-1,x2=3.
∴當(dāng)x∈(1,3)時(shí),y′<0;
當(dāng)x∈(3,4)時(shí),y′>0.
則當(dāng)x=3時(shí),函數(shù)y=2x3-6x2-18x-7在區(qū)間[1,4]上有最小值為2×33-6×32-18×3-7=-61.
故選:D.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過(guò)比較函數(shù)在(a,b)內(nèi)所有極值與端點(diǎn)函數(shù)f(a),f(b)得到的,該題為中低檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=exlnx-aex(a≠0)
(1)若函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與直線x-ey-1=0垂直,求實(shí)數(shù)a的值
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)和$\overrightarrow$=(-$\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若點(diǎn)P(a,b)在函數(shù)y=x2+3lnx的圖象上,點(diǎn)Q(c,d)在函數(shù)y=x+2的圖象上,則(a-c)2+(b-d)2的最小值為( 。
A.$\sqrt{2}$B.8C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知λ為實(shí)數(shù),向量$\overrightarrow{a}$=(1-2λ,-1),$\overrightarrow$=(1,2),若$\overrightarrow{a}⊥\overrightarrow$,則λ等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解不等式:$\frac{2{x}^{3}-2{x}^{2}-3x-1}{{x}^{3}-1}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.己知函數(shù)f(x)=g(x-1),其中g(shù)(x)=x-aex
(Ⅰ)求函數(shù)f(x)的單凋區(qū)間;
(Ⅱ)若f(x)≤-1對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)對(duì)任意n的個(gè)正整數(shù)a1,a2,…an,記A=$\frac{{a}_{1}+{a}_{2}+…{a}_{n}}{n}$
(1)求證:$\frac{{a}_{i}}{A}$≤${e}^{\frac{{a}_{i}}{A}-1}$(i=1,2,n)
(2)求證:A≥$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)計(jì)一個(gè)伸縮變換,把橢圓$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{16}$=1變成單位圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.判斷下列函數(shù)的奇偶性:
(1)f(x)=$\frac{1}{x}$;
(2)f(x)=-3x2+1;
(3)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{x-{x}^{2},x>0}\end{array}\right.$;
(4)f(x)=0;
(5)f(x)=2x+1;
(6)f(x)=$\frac{{x}^{3}-{x}^{2}}{x-1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案