【題目】已知函數(shù)f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=﹣1和x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當x∈[﹣2,6]時,f(x)<2|c|恒成立,求c的取值范圍.
【答案】(1); (2)(-∞,-18)∪(54,+∞).
【解析】
(1)根據(jù)函數(shù)的極值的概念得到方程組解出參數(shù)值即可;(2)對函數(shù)求導得到函數(shù)的單調性和極值,進而得到函數(shù)的最大值為c+54,要使f(x)<2|c|恒成立,只要c+54<2|c|即可.
(1)f′(x)=3x2-2ax+b,
∵函數(shù)f(x)在x=-1和x=3處取得極值,
∴-1,3是方程3x2-2ax+b=0的兩根.
∴ ∴.
經(jīng)檢驗滿足題意.
(2)由(1)知f(x)=x3-3x2-9x+c,
f′(x)=3x2-6x-9.令f′(x)=0,得x=-1或x=3.
當x變化時,f′(x),f(x)隨x的變化情況如下表:
而f(-2)=c-2,f(6)=c+54,
∴當x∈[-2,6]時,f(x)的最大值為c+54,
要使f(x)<2|c|恒成立,只要c+54<2|c|即可,
當c≥0時,c+54<2c,∴c>54 ,
當c<0時,c+54<-2c,∴c<-18.
∴c∈(-∞,-18)∪(54,+∞),此即為實數(shù)c的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列中,.
(1)判斷數(shù)列是否為等比數(shù)列?并說明理由;
(2)若對任意正整數(shù),恒成立,求首項的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于與不同四點,直線的斜率滿足.已知當與軸重合時,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當與軸重合時,垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標化,可得點的軌跡是橢圓,從而求得定點和點.
試題解析:當與軸重合時,, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點坐標分別為, 當直線或斜率不存在時,點坐標為或;
當直線斜率存在時,設斜率分別為, 設由, 得:
, 所以:,, 則:
. 同理:, 因為
, 所以, 即, 由題意知, 所以
, 設,則,即,由當直線或斜率不存在時,點坐標為或也滿足此方程,所以點在橢圓上.存在點和點,使得為定值,定值為.
考點:圓錐曲線的定義,性質,方程.
【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發(fā),把坐標化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.
【題型】解答題
【結束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點為,記,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,角A、B、C的對邊分別是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大小;
(2)若△ABC的面積S=,求sinB+sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1+alnx.(e為自然對數(shù)的底數(shù)),λ=min{a+2,5}.(min{a,b}表示a,b中較小的數(shù).)
(1)當a=0時,設g(x)=f(x)﹣x,求函數(shù)g(x)在[,]上的最值;
(2)當x1時,證明:f(x)+x2λ(x﹣1)+2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),存在,使得函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某漁業(yè)公司今年初用98萬元購進一艘遠洋漁船,每年的捕撈可有50萬元的總收入,已知使用年()所需(包括維修費)的各種費用總計為萬元.
(1)該船撈捕第幾年開始贏利(總收入超過總支出,今年為第一年)?
(2)該船若干年后有兩種處理方案:
①當贏利總額達到最大值時,以8萬元價格賣出;
②當年平均贏利達到最大值時,以26萬元賣出,問哪一種方案較為合算?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】挑選空間飛行員可以說是“萬里挑一”,要想通過需要五關:目測、初檢、復檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學都順利通過了前兩關,根據(jù)分析甲、乙、丙三位同學通過復檢關的概率分別是0.5、0.6、0.75,能通過文考關的概率分別是0.6、0.5、0.4,由于他們平時表現(xiàn)較好,都能通過政審關,若后三關之間通過與否沒有影響.
(1)求甲被錄取成為空軍飛行員的概率;
(2)求甲、乙、丙三位同學中恰好有一個人通過復檢的概率;
(3)設只要通過后三關就可以被錄取,求錄取人數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:,平均每趟地鐵的載客人數(shù)(單位:人)與發(fā)車時間間隔近似地滿足下列函數(shù)關系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1000人,試求發(fā)車時間間隔t的值;
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少分鐘時,平均每趟地鐵每分鐘的凈收益最大? 并求出最大凈收益.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com