【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)P是E上一點(diǎn), , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線上,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 , 求直線AB的方程.
【答案】(1);(2).
【解析】試題分析:
(1)要求E的方程,需求出。由直角三角形內(nèi)切圓半徑公式可得,所以依題意有又,由此解得,從而,由此可得橢圓的方程.
(2)由于ABCD為矩形,所以有∥,所以,設(shè)直線的方程為,代入橢圓的方程,整理得,再由弦長(zhǎng)公式得出,又由∥,由平行線距離公式可得,由得,可將化簡(jiǎn)為,再有由已知可得
即可解出得出直線AB的方程.
試題解析:
(1)直角三角形內(nèi)切圓的半徑
依題意有 ,又,由此解得,從而
故橢圓的方程為
(2)設(shè)直線的方程為,代入橢圓的方程,整理得,由得
設(shè),則,
而,由知
所以由已知可得,即,
整理得,解得或(舍去)
所以直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為.過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),若, ,且的周長(zhǎng)為.
(1)求橢圓的方程;
(2) 設(shè)橢圓在點(diǎn)處的切線記為直線,點(diǎn)在上的射影分別為,過(guò)作的垂線交軸于點(diǎn),試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,則
(1)z=x2+y2的最小值為 .
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購(gòu)物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時(shí)間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購(gòu)物量超過(guò)8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4;
(2)猜測(cè)數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批產(chǎn)品的長(zhǎng)度(單位:mm)進(jìn)行抽樣檢測(cè),下圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域是D,若存在常數(shù)m、M,使得m≤f(x)≤M對(duì)任意x∈D成立,則稱函數(shù)f(x)是D上的有界函數(shù),其中m稱為函數(shù)f(x)的下界,M稱為函數(shù)f(x)的上界;特別地,若“=”成立,則m稱為函數(shù)f(x)的下確界,M稱為函數(shù)f(x)的上確界. (Ⅰ)判斷 是否是有界函數(shù)?說(shuō)明理由;
(Ⅱ)若函數(shù)f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3為下界、3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若函數(shù) ,T(a)是f(x)的上確界,求T(a)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中 (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來(lái)曲線C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com