A. | 2 | B. | $\sqrt{3}$+1 | C. | $\sqrt{3}$+$\sqrt{2}$ | D. | $\sqrt{3}$+2 |
分析 設D(x,y),-2≤x≤0,-1≤y≤1,根據(jù)向量的坐標運算得到$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$=(x+1,y-$\sqrt{3}$),設|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|=m,得到m2=(x+1)2+(y-$\sqrt{3}$)2,由點D在圓上,聯(lián)立消去x得到m2=4-2$\sqrt{3}$y,根據(jù)函數(shù)的單調(diào)性即可求出最大值.
解答 解:設D(x,y),-2≤x≤0,-1≤y≤1,
∵A(1,0),B(0,-$\sqrt{3}$),
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$=(x+1,y-$\sqrt{3}$),
設|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|=m,
∴m2=(x+1)2+(y-$\sqrt{3}$)2,
∵(x+1)2+y2=1,
∴m2=1-y2+(y-$\sqrt{3}$)2=4-2$\sqrt{3}$y,
∴當y=-1時,m2有最大值,
即m2=4+2$\sqrt{3}$=($\sqrt{3}$+1)2,
∴m=$\sqrt{3}$+1,
故|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|的最大值為$\sqrt{3}$+1.
故選:B.
點評 本題考查了向量的坐標運算,以及摸的計算和函數(shù)的單調(diào)性,得到m2=4-2$\sqrt{3}$y是本題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | g(x)=sin2x+2 | B. | g(x)=sin(2x+$\frac{π}{6}$)+2 | C. | g(x)=sin(2x+$\frac{π}{6}$)+1 | D. | g(x)=sin(4x-$\frac{π}{3}$)+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1,0,-1,0,… | B. | 1,11,111,1111,… | C. | 1,5,9,13,… | D. | 1,2,4,8,… |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{6}$ | B. | -$\frac{{\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | -$\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com