已知圓上任一點(diǎn)     
(1)求的取值范圍
(2)若恒成立,求實(shí)數(shù)C的最小值,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被曲線(xiàn)C所截線(xiàn)段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C1與圓C2相交于A、B兩點(diǎn),
(1)求公共弦AB所在的直線(xiàn)方程;
(2)求圓心在直線(xiàn)上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知為平面直角坐標(biāo)系的原點(diǎn),過(guò)點(diǎn)的直線(xiàn)與圓交于,兩點(diǎn).
(I)若,求直線(xiàn)的方程;
(Ⅱ)若的面積相等,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求經(jīng)過(guò)點(diǎn),且與圓相切于點(diǎn)的圓的方程,并判斷兩圓是外切還是內(nèi)切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)已知圓C與圓相交,所得公共弦平行于已知直線(xiàn) ,又圓C經(jīng)過(guò)點(diǎn)A(-2,3),B(1,4),求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點(diǎn)P為線(xiàn)段CA(不包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),以為圓心,1為半徑作
(1)連結(jié),若,試判斷與直線(xiàn)AB的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)線(xiàn)段PC等于多少時(shí),與直線(xiàn)AB相切?
(3)當(dāng)與直線(xiàn)AB相交時(shí),寫(xiě)出線(xiàn)段PC的取值范圍。
(第(3)問(wèn)直接給出結(jié)果,不需要解題過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+y2=r2(r>0)經(jīng)過(guò)點(diǎn)(1,).
(1)求圓C的方程;
(2)是否存在經(jīng)過(guò)點(diǎn)(-1,1)的直線(xiàn)l,它與圓C相交于A,B兩個(gè)不同點(diǎn),且滿(mǎn)足=+(O為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)M也在圓C上?如果存在,求出直線(xiàn)l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知F2、F1是雙曲線(xiàn)-=1(a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線(xiàn)的對(duì)稱(chēng)點(diǎn)恰好
落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線(xiàn)的離心率為(  )

A.3B.C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案