已知正數(shù)x,y,z滿足x2+y2+z2=1,則S=
1
2xyz2
的最小值為( 。
A.2B.4C.
9
2
D.
9
4
∵正數(shù)x,y,z滿足x2+y2+z2=1,
∴1=x2+y2+
1
2
z2+
1
2
z2≥4
4x2y2
z2
2
z2
2

4x2y2
z2
2
z2
2
1
4
,
∴x2•y2
z4
4
1
44
,
∴2xyz2
1
4
,當(dāng)且僅當(dāng)x=y=
2
2
z取等號(hào).
S=
1
2xyz2
的最小值為4,
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-5:不等式選講)
已知正數(shù)x,y,z滿足x2+y2+z2=1.
(Ⅰ)求x+2y+2z的最大值;
(Ⅱ)若不等式|a-3|≥x+2y+2z對(duì)一切正數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x、y、z滿足x+y+z=1,則
1
x
+
4
y
+
9
z
的最小值為
36
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)選修數(shù)學(xué)-4-5人教A版 人教A版 題型:044

已知正數(shù)x,y,z滿足x+y+z=xyz,且不等式λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知正數(shù)x,y,z滿足xyz=xyz,且不等式恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x、y、z滿足x+y+z=xyz,且不等式≤λ恒成立,求λ的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案