(1)化簡lg22+lg25+2lg2•lg5+eln2+(-8) 
2
3
;
(2)若loga
4
5
<1(a>0,且a≠1),求實數(shù)a的取值范圍.
考點:對數(shù)的運算性質(zhì),對數(shù)函數(shù)的圖像與性質(zhì)
專題:
分析:(1)利用對數(shù)的運算法則和運算性質(zhì)求解.
(2)由loga
4
5
<1=logaa,按a>1和0<a<1兩種情況分類討論,利用對數(shù)函數(shù)的性質(zhì)能求出實數(shù)a的取值范圍.
解答: 解:(1)lg22+lg25+2lg2•lg5+eln2+(-8) 
2
3

=(lg2+lg5)2+2+4
=7.
(2)∵loga
4
5
<1=logaa,
∴當(dāng)a>1時,a>
4
5
,故a>1;
當(dāng)0<a<1時,a<
4
5
,故0<a<
4
5
,
∴實數(shù)a的取值范圍是(0,
4
5
)∪(1,+∞).
點評:本題考查對數(shù)式求值,考查實數(shù)的取值范圍的求法,解題時要認真審題,注意對數(shù)的運算法則和運算性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從{1,2,3,4,5}中隨機選取一個數(shù)a,從{1,2,3}中隨機選取一個數(shù)b,則關(guān)于x的方程x2+ax+b2=0有兩個不相等的實根的概率是( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
4x2+4x-15
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在已知函數(shù)f(x)=Asin(ωx+φ),x∈R,其中A>0,ω>0,0<φ<
π
2
的圖象與x軸的交點中,相鄰兩個交點之間的距離為
π
2
,且圖象上的一個最低點為M(
3
,-2).
(1)求函數(shù)的解析式;
(2)說明函數(shù)f(x)是由函數(shù)y=sinx的圖象依次經(jīng)過哪些變換得到的;
(3)當(dāng)x∈[
π
12
,
π
2
]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3-2x≤0},B={x|x2-3x+2<0},U=R,求:
(1)A∩B   
(2)A∪B   
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(a-1,b)上的奇函數(shù),當(dāng)0≤x<b時,f(x)=(
1
2
x-x+a.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx-
k
x
-2lnx.
(Ⅰ)若函數(shù)f(x)的圖象在點(1,f(1))處的切線方程為2x+5y-2=0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,+∞)為增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3≤0},集合B={x|[x-(m-2)][x-(m+2)]≤0,m∈R}.
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
sin(π-α)cos(
π
2
+α)
sin(π+α)
+
sin(
π
2
-α)cos(
π
2
-α)
cos(π+α)

(2)cos(-1140°)+tan945°+sin(-
6
)+tan(-
17
3
π)

查看答案和解析>>

同步練習(xí)冊答案