以點(1,0)為圓心,且與直線2x+y=1相切的圓方程是
(x-1)2+y2=
1
5
(x-1)2+y2=
1
5
分析:根據(jù)題意設圓方程為(x-1)2+y2=r2,由點到直線的距離公式算出半徑r等于d=
|2×1+0-1|
5
=
5
5
,代入即可得到所求圓的方程.
解答:解:∵圓的圓心是(1,0)
∴設圓方程為(x-1)2+y2=r2
求得點(1,0)到直線的距離d=
|2×1+0-1|
5
=
5
5

∵直線2x+y=1與圓相切,∴圓的半徑r=
5
5

可得圓方程為(x-1)2+y2=
1
5

故答案為:(x-1)2+y2=
1
5
點評:本題給出以(1,0)為圓心的圓與已知直線相切,求圓的方程.著重考查了點到直線的距離公式和圓的方程等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設雙曲線C:
y2
a2
-
x2
3
=1(a>0)
的兩條漸近線l1,l2與以點(1,0)為圓心,
1
2
為半徑的圓相切.
(I)求a的值;
(II)若雙曲線C的兩個焦點分別為F1、F2,A、B分別為l1,l2上的點,且2|AB|=3|F1F2|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省衢州市江山實驗中學高二(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

以點(1,0)為圓心,且與直線2x+y=1相切的圓方程是   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年安徽省知名省級示范高中第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

設雙曲線的兩條漸近線l1,l2與以點(1,0)為圓心,為半徑的圓相切.
(I)求a的值;
(II)若雙曲線C的兩個焦點分別為F1、F2,A、B分別為l1,l2上的點,且2|AB|=3|F1F2|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

同步練習冊答案