【題目】如圖所示,在梯形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的取值范圍.
【答案】(1)證明見解析;(2)
【解析】
(1)通過證明.,轉(zhuǎn)化證明平面,然后推出平面;
(2)建立空間直角坐標(biāo)系,設(shè),求出相關(guān)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量,令,由題意可得平面的一個(gè)法向量,求出兩法向量所成角的余弦值,即可求的取值范圍.
(1)證明:設(shè),
∵,,∴,
∴,
∴,則.
∵四邊形為矩形,∴,
而平面,且,∴平面.
∵,∴平面.
(2)以為坐標(biāo)原點(diǎn),分別以直線,,為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,
令,則,,,,
所以,,
設(shè)為平面的一個(gè)法向量,
由,得,
取,所以,
因?yàn)?/span>是平面的一個(gè)法向量.
所以.
因?yàn)?/span>,所以當(dāng)時(shí),有最小值,
當(dāng)時(shí),有最大值,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.共生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
已知,.
(1)已知變量,只有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回方程;
(2)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對應(yīng)的差的絕對值時(shí),則將售數(shù)數(shù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6小銷售數(shù)據(jù)中任取2個(gè);求“好數(shù)據(jù)”至少有一個(gè)的概率.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為.
Ⅰ試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知,,,D是邊AC上一點(diǎn),將沿BD折起,得到三棱錐.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),,三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評分?jǐn)?shù)如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);
(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知點(diǎn),,動(dòng)點(diǎn)P滿足,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線與曲線W交于不同的兩點(diǎn)C,D,若存在點(diǎn),使得成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三角形的邊長為2,是邊的中點(diǎn),動(dòng)點(diǎn)滿足,且,其中,則的最大值為( )
A.1B.C.2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com