已知函數(shù)
(Ⅰ)若,求函數(shù)f(x)的極值;
(Ⅱ)若對(duì)任意的x∈(1,3),都有f(x)>0成立,求a的取值范圍.
【答案】分析:(I)先求出f′(x)=0的值,再討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來(lái)確定極值點(diǎn),從而求出極值;
(II)先求出,當(dāng)x∈(1,3)時(shí),,然后討論1+a與區(qū)間(2,)的位置關(guān)系,研究函數(shù)的單調(diào)性,求出函數(shù)的最小值,使對(duì)任意的x∈(1,3),都有f(x)min>0成立即可.
解答:解:(I),f'(x)=0,得,或x2=2,
列表:

函數(shù)f(x)在處取得極大值,
函數(shù)f(x)在x=2處取得極小值f(2)=ln2-1;(4分)
(II):,x∈(1,3)時(shí),,(5分)
(i)當(dāng)1+a≤2,即a≤1時(shí),x∈(1,3)時(shí),
f'(x)>0,函數(shù)f(x)在(1,3)是增函數(shù)?x∈(1,3),f(x)>f(1)=0恒成立;(7分)
(ii)當(dāng),即時(shí),x∈(1,3)時(shí),
f'(x)<0,函數(shù)f(x)在(1,3)是減函數(shù)?x∈(1,3),f(x)<f(1)=0恒成立,不合題意(9分)
(iii)當(dāng),即時(shí),x∈(1,3)時(shí),
f'(x)先取負(fù),再取,最后取正,函數(shù)f(x)在(1,3)先遞減,再遞增,
而f(1)=0,∴?x∈(1,3),f(x)>f(1)=0不能恒成立;(11分)
綜上,a的取值范圍是a≤1.(12分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等有關(guān)基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
13
x
,若f(a3)+f(b3)=6,則f(ab)的值等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為M,N,且M⊆N,若對(duì)任意的x∈M,都有g(shù)(x)=f(x),則稱g(x)是f(x)的“拓展函數(shù)”.已知函數(shù)f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函數(shù)”,且g(x)是偶函數(shù),則符合條件的一個(gè)g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合條件的函數(shù)也可)
g(x)=
1
3
log2|x|
(其它符合條件的函數(shù)也可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)

(1)若,求的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省海林市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求,的值;

(2)當(dāng)時(shí),若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知函數(shù),

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案