精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1的棱長為2,點P是平面ABCD上的動點,點M在棱AB上,且AM=
1
3
,且動點P到直線A1D1的距離與點P到點M的距離的平方差為4,則動點P的軌跡是(  )
A、圓B、拋物線C、雙曲線D、直線
分析:作PQ⊥AD,作QR⊥D1A1,PR即為點P到直線A1D1的距離,由勾股定理得 PR2-PQ2=RQ2=4,又已知PR2-PM2=4,PM=PQ,即P到點M的距離等于P到AD的距離.
解答:精英家教網(wǎng)解:如圖所示:正方體ABCD-A1B1C1D1中,作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,過點Q作QR⊥D1A1
則D1A1⊥面PQR,PR即為點P到直線A1D1的距離,由題意可得 PR2-PQ2=RQ2=4.
又已知 PR2-PM2=4,
∴PM=PQ,即P到點M的距離等于P到AD的距離,根據(jù)拋物線的定義可得,點P的軌跡是拋物線,
故選 B.
點評:本題考查拋物線的定義,求點的軌跡方程的方法,體現(xiàn)了數(shù)形結合的數(shù)學思想,得到PM=PQ是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點.證明:向量
A1B
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案